Higher Dimensional Lattices

  • Christopher ChongEmail author
  • Panayotis G. Kevrekidis
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


Two-dimensional granular crystals have been investigated far less than 1D configurations. In two spatial dimensions, the nodes can be arranged in a number of ways. While the role of disorder is of particular interest for engineering applications (Behringer RP (2015) Jamming in granular materials. C R Phys 16:10 [1], Liu A, Nagel SR (2010) The jamming transition and the marginally jammed solid. Annu Rev Cond Matter Phys 1:347 [2]) we will focus on ordered configurations, such as hexagonal (see Figs.7.1 a,b) or square packings.


  1. 1.
    R.P. Behringer, Jamming in granular materials. C. R. Phys. 16, 10 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    A. Liu, S.R. Nagel, The jamming transition and the marginally jammed solid. Annu. Rev. Cond. Matter Phys. 1, 347 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    I. Szelengowicz, M.A. Hasan, Y. Starosvetsky, A. Vakakis, C. Daraio, Energy equipartition in two-dimensional granular systems with spherical intruders. Phys. Rev. E 87, 032204 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    I. Szelengowicz, P.G. Kevrekidis, C. Daraio, Wave propagation in square granular crystals with spherical interstitial intruders. Phys. Rev. E 86, 061306 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Starosvetsky, M.A. Hasan, A.F. Vakakis, Nonlinear pulse equipartition in weakly coupled ordered granular chains with no precompression. J. Comp. Nonlin. Dyn. 8, 034504 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Leonard, C. Chong, P.G. Kevrekidis, C. Daraio, Traveling waves in 2D hexagonal granular crystal lattices. Granul. Matter 16, 531 (2014)CrossRefGoogle Scholar
  7. 7.
    C. Chong, P.G. Kevrekidis, M.J. Ablowitz, Y.-P. Ma, Conical wave propagation and diffraction in 2D hexagonally packed granular lattices. Phys. Rev. E 93, 012909 (2016)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    W.R. Hamilton, Third supplement to an essay on the theory of systems of rays. Trans. R. Ir. Acad. 17, 1 (1837)Google Scholar
  9. 9.
    H. Lloyd, On the phenomena presented by light in its passage along the axes of biaxial crystals. Trans. R. Ir. Acad. 17, 145 (1837)Google Scholar
  10. 10.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    M.J. Ablowitz, C.W. Curtis, Y.-P. Ma, Linear and nonlinear traveling edge waves in optical honeycomb lattices. Phys. Rev. A 90, 023813 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    D. Torrent, J. Sánchez-Dehesa, Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves. Phys. Rev. Lett. 108, 174301 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    D. Torrent, D. Mayou, J. Sánchez-Dehesa, Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates. Phys. Rev. B 87, 115143 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    T. Antonakakis, R.V. Craster, S. Guenneau, High-frequency homogenization of zero-frequency stop band photonic and phononic crystals. New J. Phys. 15, 103014 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M.J. Ablowitz, Y. Zhu, Nonlinear dynamics of bloch wave packets in honeycomb lattices, in Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations (Springer, Germany, 2013), p. 1CrossRefGoogle Scholar
  17. 17.
    O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, D.N. Christodoulides, Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    M.J. Ablowitz, S.D. Nixon, Y. Zhu, Conical diffraction in honeycomb lattices. Phys. Rev. A 79, 053830 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    O. Bahat-Treidel, O. Peleg, M. Segev, H. Buljan, Breakdown of Dirac dynamics in honeycomb lattices due to nonlinear interactions. Phys. Rev. A 82, 013830 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    S.G. Bardenhagen, J.U. Brackbill, Dynamic stress bridging in granular materials. J. Appl. Physics 83, 5732 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    K.M. Roessig, J.C. Foster, S.G. Bardenhagen, Dynamic stress chain formation in a two-dimensional particle bed. Exp. Mech. 42, 329 (2002)CrossRefGoogle Scholar
  22. 22.
    A. Leonard, C. Daraio, Stress wave anisotropy in centered square highly nonlinear granular systems. Phys. Rev. Lett. 108, 214301 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    A. Leonard, C. Daraio, A. Awasthi, P. Geubelle, Effects of weak disorder on stress wave anisotropy in centered square nonlinear granular crystals. Phys. Rev. E 86, 031305 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    A.P. Awasthi, K.J. Smith, P.H. Geubelle, J. Lambros, Propagation of solitary waves in 2D granular media: a numerical study. Mech. Mater. 54, 100 (2012)CrossRefGoogle Scholar
  25. 25.
    M.S. Abd-Elhady, S. Abd-Elhady, C.C.M. Rindt, A.A. van Steenhoven, Force propagation speed in a bed of particles due to an incident particle impact. Adv. Powder Tech. 21, 150 (2010)CrossRefGoogle Scholar
  26. 26.
    M. Nishida, Y. Tanaka, DEM simulations and experiments for projectile impacting two-dimensional particle packings including dissimilar material layers. Gran. Matter 12, 357 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Nishida, K. Tanaka, T. Ishida, DEM simulation of wave propagation in two-dimensional ordered array of particles, in Shock Waves (Springer, Germany, 2009), p. 815zbMATHGoogle Scholar
  28. 28.
    C. Coste, B. Gilles, Sound propagation in a constrained lattice of beads: high-frequency behavior and dispersion relation. Phys. Rev. E 77, 021302 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    B. Gilles, C. Coste, Low-frequency behavior of beads constrained on a lattice. Phys. Rev. Lett. 90, 174302 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    O. Mouraille, A.W. Mulder, S. Luding, Sound wave acceleration in granular materials. J. Stat. Mech: Theory Exp 7, 07023 (2006)CrossRefGoogle Scholar
  31. 31.
    A. Leonard, F. Fraternali, C. Daraio, Directional wave propagation in a highly nonlinear square packing of spheres. Exp. Mech. 53, 327 (2013)CrossRefGoogle Scholar
  32. 32.
    V.I. Erofeev, V.V. Kazhaev, I.S. Pavlov, Nonlinear Localized Strain Waves in a 2D Medium with Microstructure (Springer, Germany, 2013), p. 91Google Scholar
  33. 33.
    A. Leonard, L. Ponson, C. Daraio, Exponential stress mitigation in structured granular composites. Extrem. Mech. Lett. 1, 23 (2015)CrossRefGoogle Scholar
  34. 34.
    W.J. Falls, S. Sen, Solitary wave propagation through two-dimensional treelike structures. Phys. Rev. E 89, 023209 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    A. Spadoni, C. Daraio, Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Natl. Acad. Sci. USA 107, 7230 (2010)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Bowdoin CollegeBrunswickUSA
  2. 2.University of MassachusettsAmherstUSA

Personalised recommendations