Advertisement

Media with Onsite Forces: The Newton’s Cradle and Beyond

  • Christopher ChongEmail author
  • Panayotis G. Kevrekidis
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

In this section, we finally return to the Newton’s cradle shown in Fig. 1 and Fig. 28a. When the chain of balls is struck at one end, the ball on the opposite end is ejected from the chain, providing a nice illustration of the principle of conservation of momentum. In reality, not all of the energy is transferred to the ejected particle (Hutzler S, Delaney G, Weaire D, MacLeod F (2004) Rocking Newton’s cradle. Am J Phys 72:1508–1516 [1]). While dissipation will account for some energy loss, it is also important to account for forces between the particles due to their elastic deformation. In other words, the Hertzian contact between the particles plays an important role in the dynamics of the Newton’s cradle. As we have seen throughout this volume, the dynamics of a chain of particles interacting through Hertzian contact is extremely rich and complex. We already have a model accounting for the Hertzian contact in Eq. (3).

References

  1. 1.
    S. Hutzler, G. Delaney, D. Weaire, F. MacLeod, Rocking Newton’s cradle. Am. J. Phys. 72, 1508–1516 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    G. James, P.G. Kevrekidis, J. Cuevas, Breathers in oscillator chains with Hertzian interactions. Physica D 251, 39 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    G. James, Nonlinear waves in Newton’s cradle and the discrete p-Schrödinger equation. Math. Models Meth. Appl. Sci. 21, 2335 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    B. Bidégaray-Fesquet, E. Dumas, G. James, From Newton’s cradle to the discrete p-Schrödinger equation. SIAM J. Math. Anal. 45, 3404–3430 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis Numerical Computations and Physical Perspectives (Springer, New York, 2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    G. James, Y. Starosvetsky, Breather solutions of the discrete p-Schrödinger equation, Localized Excitations in Nonlinear Complex Systems (Nonlinear Systems and Complexity 7) (Springer, Berlin, Germany, 2014), p. 77CrossRefzbMATHGoogle Scholar
  7. 7.
    L. Bonanomi, G. Theocharis, C. Daraio, Wave propagation in granular chains with local resonances. Phys. Rev. E 91, 033208 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    P.G. Kevrekidis, A. Vainchtein, M. Serra-Garcia, C. Daraio, Interaction of traveling waves with mass-with-mass defects within a Hertzian chain. Phys. Rev. E 87, 042911 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    G. Gantzounis, M. Serra-Garcia, K. Homma, J.M. Mendoza, C. Daraio, Granular metamaterials for vibration mitigation. J. Appl. Phys. 114, 093514 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    E. Kim, J. Yang, Wave propagation in single column woodpile phononic crystals: Formation of tunable band gaps. J. Mech. Phys. Solids 71, 33–45 (2014)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    E. Kim, F. Li, C. Chong, G. Theocharis, J. Yang, P.G. Kevrekidis, Highly nonlinear wave propagation in elastic woodpile periodic structures. Phys. Rev. Lett. 114, 118002 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    J. Boyd, Weakly non-local solitary waves, in Nonlinear Topics in Ocean Physics: Proceedings of the Fermi School, (Elsevier, Amsterdam, 1991), pp. 51–97Google Scholar
  13. 13.
    J.P. Boyd, Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics: Generalized Solitons and Hyperasymptotic Perturbation Theory (Springer, New York, 1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    K. Vorotnikov, Y. Starosvetsky, G. Theocharis, P. Kevreidis, Wave propagation in a strongly nonlinear locally resonant granular crystal. Preprint, (2017)Google Scholar
  15. 15.
    J.M. English, R.L. Pego, On the solitary wave pulse in a chain of beads. Proc. AMS 133, 1763 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. Stefanov, P.G. Kevrekidis, On the existence of solitary traveling waves for generalized Hertzian chains. J. Nonlinear Sci. 22, 327 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    H. Xu, P.G. Kevrekidis, A. Stefanov, Traveling waves and their tails in locally resonant granular systems. J. Phys. A Math. Theor. 48, 195204 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    A. Stefanov, P.G. Kevrekidis, Traveling waves for monomer chains with pre-compression. Nonlinearity 26, 539 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    L. Liu, G. James, P. Kevrekidis, A. Vainchtein, Strongly nonlinear waves in locally resonant granular chains. Nonlinearity 29, 3496 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    L. Liu, G. James, P.G. Kevrekidis, A. Vainchtein, Breathers in a locally resonant granular chain with precompression. (2016). arXiv:1603.06033

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Bowdoin CollegeBrunswickUSA
  2. 2.University of MassachusettsAmherstUSA

Personalised recommendations