Advertisement

Traveling Waves

  • Christopher ChongEmail author
  • Panayotis G. Kevrekidis
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

Arguably, the most prototypical nonlinear wave structure that can arise in granular crystals consists of traveling waves. While many kinds of traveling waves exist (such as periodic ones [1]), in this chapter we are interested in ones that are spatially localized, i.e., traveling solitary waves (which we will simply call traveling waves when the distinction is clear). In fact, in the first “phase” of research on this topic, as covered extensively by the quintessential references of [2, 3], shock waves (the subject of the previous chapter) had barely been touched upon, while breathers (the subject of the next chapter) were altogether absent.

References

  1. 1.
    Y. Starosvetsky, K. Jayaprakash, M.A. Hasan, A. Vakakis, Dynamics and Acoustics of Ordered Granular Media (World Scientific, Singapore, 2017)CrossRefzbMATHGoogle Scholar
  2. 2.
    V.F. Nesterenko, Dynamics of Heterogeneous Materials (Springer-Verlag, New York, 2001)Google Scholar
  3. 3.
    S. Sen, J. Hong, J. Bang, E. Avalos, R. Doney, Solitary waves in the granular chain. Phys. Rep. 462, 21 (2008)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A.N. Lazaridi, V.F. Nesterenko, Observation of a new type of solitary waves in one-dimensional granular medium. J. Appl. Mech. Tech. Phys. 26, 405 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    C. Chong, M.A. Porter, P.G. Kevrekidis, C. Daraio, Nonlinear coherent structures in granular crystals. J. Phys. Condens. Matter 29, 413003 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Toda, Theory of nonlinear lattices (Springer, Heidelberg, 1989)CrossRefzbMATHGoogle Scholar
  7. 7.
    E. Fermi, J. Pasta, S. Ulam, Studies of Nonlinear Problems. I., (Los Alamos National Laboratory, Los Alamos, NM, USA), Technical Report (1955), pp. LA–1940Google Scholar
  8. 8.
    K. Atkinson, An Introduction to Numerical Analysis (Wiley, Hoboken, 1989)Google Scholar
  9. 9.
    P.G. Drazin, R.S. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, 1989)CrossRefzbMATHGoogle Scholar
  10. 10.
    R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    H.D. Wahlquist, F.B. Estabrook, Bäcklund transformation for solutions of the Korteweg-de Vries equation. Phys. Rev. Lett. 31, 1386–1390 (1973)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    T.R. Marchant, Asymptotic solitons of the extended Korteweg-de Vries equation. Phys. Rev. E 59, 3745–3748 (1999)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Y. Shen, P.G. Kevrekidis, S. Sen, A. Hoffman, Characterizing traveling-wave collisions in granular chains starting from integrable limits: the case of the Korteweg-de Vries equation and the Toda lattice. Phys. Rev. E 90, 022905 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    P. Rosenau, J.M. Hyman, Compactons: solitons with finite wavelength. Phys. Rev. Lett. 70, 564–567 (1993)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    B. Dey, Compactons, Preprint (2017)Google Scholar
  16. 16.
    V.F. Nesterenko, Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 733 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    K. Ahnert, A. Pikovsky, Compactons and chaos in strongly nonlinear lattices. Phys. Rev. E 79, 026209 (2009)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    M.A. Collins, A quasicontinuum approximation for solitons in an atomic chain. Chem. Phys. Lett. 77, 342 (1981)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    D. Hochstrasser, F. Mertens, H. Büttner, An iterative method for the calculation of narrow solitary excitations on atomic chains. Physica D 35, 259 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    J.A.D. Wattis, Approximations to solitary waves on lattices. II. Quasi-continuum methods for fast and slow waves. J. Phys. A Math. Gen. 26, 1193 (1993)Google Scholar
  21. 21.
    C. Coste, E. Falcon, S. Fauve, Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    G. Friesecke, J.A.D. Wattis, Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161, 391 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    R.S. MacKay, Solitary waves in a chain of beads under Hertz contact. Phys. Lett. A 251, 191 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    A. Chatterjee, Asymptotic solution for solitary waves in a chain of elastic spheres. Phys. Rev. E 59, 5912 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    J.M. English, R.L. Pego, On the solitary wave pulse in a chain of beads. Proc. AMS 133, 1763 (2005)Google Scholar
  26. 26.
    E. Kim, R. Chaunsali, H. Xu, J. Castillo, J. Yang, P.G. Kevrekidis, A.F. Vakakis, Nonlinear low-to-high frequency energy cascades in diatomic granular crystals. Phys. Rev. E 92, 062201 (2015)Google Scholar
  27. 27.
    A. Stefanov, P.G. Kevrekidis, On the existence of solitary traveling waves for generalized Hertzian chains. J. Nonlinear Sci. 22, 327 (2012)Google Scholar
  28. 28.
    A. Stefanov, P.G. Kevrekidis, Traveling waves for monomer chains with pre-compression. Nonlinearity 26, 539 (2013)Google Scholar
  29. 29.
    J. Cuevas-Maraver, P.G. Kevrekidis, A. Vainchtein, H. Xu, Unifying perspective: solitary traveling waves as discrete breathers in Hamiltonian lattices and energy criteria for their stability. Phys. Rev. E 96, 032214 (2017)Google Scholar
  30. 30.
    G. Friesecke, R.L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices: III Howland-type Floquet theory. Nonlinearity 17, 207 (2004)Google Scholar
  31. 31.
    P.G. Kevrekidis, J. Cuevas-Maraver, D.E. Pelinovsky, Energy criterion for the spectral stability of discrete breathers. Phys. Rev. Lett. 117, 094101 (2016)Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Bowdoin CollegeBrunswickUSA
  2. 2.University of MassachusettsAmherstUSA

Personalised recommendations