Skip to main content

Dispersive Shock Waves

  • Chapter
  • First Online:
Coherent Structures in Granular Crystals

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 401 Accesses

Abstract

Shock waves are nonlinear structures characterized by a discontinuous jump in the wave profile. There exist prototypical examples of partial differential equations (PDEs), including the well-known Burgers’ equation (without dissipation), where the relevant waveforms feature infinite derivatives arising in finite time. To study shock waves in equations like the inviscid Burgers’ equations one can study the evolution of Riemann initial conditions involving a jump in the initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Ablowitz, M. Hoefer, Dispersive shock waves. Scholarpedia 4, 5562 (2009)

    ADS  Google Scholar 

  2. W.A. Strauss, Partial Differential Equations: An Introduction (Wiley, Hoboken, 2008)

    MATH  Google Scholar 

  3. J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer-Verlag, New York, 1983)

    Book  MATH  Google Scholar 

  4. P.G. Drazin, R.S. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, UK, 1989)

    Google Scholar 

  5. G.A. El, M.A. Hoefer, M. Shearer, Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws. SIAM Review 59, 3–61 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Fermi, J. Pasta, S. Ulam, Studies of Nonlinear Problems. I., (Los Alamos National Laboratory, Los Alamos, NM, USA), Technical Report (1955), pp. LA–1940

    Google Scholar 

  7. M. Herrmann, J.D.M. Rademacher, Riemann solvers and undercompressive shocks of convex FPU chains. Nonlinearity 23, 277 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Molinari, C. Daraio, Stationary shocks in periodic highly nonlinear granular chains. Phys. Rev. E 80, 056602 (2009)

    Article  ADS  Google Scholar 

  9. E.B. Herbold, V.F. Nesterenko, Shock wave structure in a strongly nonlinear lattice with viscous dissipation. Phys. Rev. E 75, 021304 (2007)

    Article  ADS  Google Scholar 

  10. V.F. Nesterenko, Dynamics of Heterogeneous Materials (Springer-Verlag, New York, 2001)

    Google Scholar 

  11. H. Yasuda, C. Chong, J. Yang, P.G. Kevrekidis, Emergence of dispersive shocks and rarefaction waves in power-law contact models. Phys. Rev. E 95, 062216 (2017)

    Article  ADS  Google Scholar 

  12. B.E. McDonald, D. Calvo, Simple waves in Hertzian chains. Phys. Rev. E 85, 066602 (2012)

    Article  ADS  Google Scholar 

  13. Propagation of rarefaction pulses in discrete materials with strain-softening behavior. Phys. Rev. Lett. 110 144101 (2013)

    Google Scholar 

  14. F. Fraternali, G. Carpentieri, A. Amendola, R.E. Skelton, V.F. Nesterenko, Multiscale tunability of solitary wave dynamics in tensegrity metamaterials. Appl. Phys. Lett. 105, 201903 (2014)

    Article  Google Scholar 

  15. H. Yasuda, C. Chong, E.G. Charalampidis, P.G. Kevrekidis, J. Yang, Formation of rarefaction waves in origami-based metamaterials. Phys. Rev. E 93, 043004 (2016)

    Google Scholar 

  16. C. Chong, P.G. Kevrekidis, G. Schneider, Justification of leading order quasicontinuum approximations of strongly nonlinear lattices. Disc. Cont. Dyn. Sys. A 34, 3403 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Atkinson, An Introduction to Numerical Analysis (Wiley, Hoboken, 1989)

    Google Scholar 

  18. R.J. LeVeque, Numerical Methods for Conservation Laws (Birkhauser, Basel, 1992)

    Book  MATH  Google Scholar 

  19. S. Sen, J. Hong, J. Bang, E. Avalos, R. Doney, Solitary waves in the granular chain. Phys. Rep. 462, 21 (2008)

    Google Scholar 

  20. M. Toda, Theory of Nonlinear Lattices (Springer-Verlag, Heidelberg, 1989)

    Google Scholar 

  21. C.V. Turner, R.R. Rosales, The small dispersion limit for a nonlinear semidiscrete system of equations. Stud. Appl. Math. 99, 205 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Chong .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chong, C., Kevrekidis, P.G. (2018). Dispersive Shock Waves. In: Coherent Structures in Granular Crystals. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-77884-6_2

Download citation

Publish with us

Policies and ethics