Skip to main content

Adaptation of Crops to Warmer Climates: Morphological and Physiological Mechanisms

  • Chapter
  • First Online:
Sustainable Solutions for Food Security

Abstract

Increased surface temperature is one of the major reasons for reduced crop productivity in many parts of the world. Response to elevated temperature varies among crop species—a certain threshold temperature has been determined for each crop above which it suffers yield losses. Thus, some crop species, e.g. summer crops (cotton, rice, sorghum), are considered relatively more tolerant to high temperature than winter crops (wheat, barley, chickpeas, faba bean). Heat-induced yield penalties in crops are the result of inhibited vegetative growth or impaired reproductive development. High temperature can cause cellular injury, leading to catastrophic collapse of cellular organization and functioning and ultimately, growth inhibition. Similarly, reproductive structures, especially pollen are highly sensitive to elevated temperatures and a heat shock event at reproductive phase impairs fertilisation and consequently increases fruit or seed abortion. Tolerance to high temperature is associated with a range of physiological and morphological adaptations in plants. For example, plants can tolerate heat-induced damage through foliar orientation, stomatal regulation and stimulation of antioxidative defence systems. These adaptive mechanisms are regulated by stress responsive genes, encoding for specific proteins, e.g. heat shock proteins, which enable plants to survive under extreme environments. This chapter discusses various adaptive, avoidance and acclimation mechanisms of heat tolerance in plants. It also highlights the breeding and management techniques used for inducing heat stress tolerance in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarie, S., Hanaoka, N., Ueno, O., Miyazaki, A., Kubota, F., Agata, W., & Kaufman, P. B. (1998). Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Production Science, 1, 96–103.

    Article  Google Scholar 

  • Ahmed, F. E., Hall, A. E., & DeMason, D. A. (1992). Heat Injury during floral development in Cowpea (Vigna unguiculata, Fabaceae). American Journal of Botany, 79, 784–791.

    Article  Google Scholar 

  • Ainsworth, E. A., & Ort, D. R. (2010). How do we improve crop production in a warming world? Plant Physiology, 154, 526–530.

    Article  CAS  Google Scholar 

  • Akman, Z. (2009). Comparison high temperature stress in maize, rice and sorghum by plant growth regulators. Journal of Animal and Veterinary Advances, 8, 358–361.

    CAS  Google Scholar 

  • Almeselmani, M., Deshmukh, P. S., & Sairam, R. K. (2009). High temperature stress tolerance in wheat genotypes: Role of antioxidant defence enzymes. Acta Agronomica Hungarica, 57, 1–14.

    Article  CAS  Google Scholar 

  • Almeselmani, M., Deshmukh, P. S., Sairam, R. K., Kushwaha, S., & Singh, T. (2006). Protective role of antioxidant enzymes under high temperature stress. Plant Science, 171, 382–388.

    Article  CAS  Google Scholar 

  • Azhar, F., Ali, Z., Akhtar, M., Khan, A., & Trethowan, R. (2009). Genetic variability of heat tolerance, and its effect on yield and fibre quality traits in upland cotton (Gossypium hirsutum L.). Plant Breeding, 128, 356–362.

    Article  Google Scholar 

  • Bahar, B., Yildirim, M., Barutcular, C., & Ibrahim, G. (2008). Effect of canopy temperature depression on grain yield and yield components in bread and durum wheat. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 36, 34–37.

    Google Scholar 

  • Balla, K., Bencze, S., Janda, T., & Veisz, O. (2009). Analysis of heat stress tolerance in winter wheat. Acta Agronomica Hungarica, 57, 437–444.

    Article  Google Scholar 

  • Barnabs, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31, 11–38.

    Google Scholar 

  • Basu, P. S., Masood, A., & Chaturvedi, S. K. (2009). Terminal heat stress adversely affects chickpea productivity in Northern India–strategies to improve thermotolerance in the crop under climate change.” W3 Workshop Proceedings: Impact of Climate Change on Agriculture.

    Google Scholar 

  • Bennett, D., Izanloo, A., Reynolds, M., Kuchel, H., Langridge, P., & Schnurbusch, T. (2012). Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theoretical and Applied Genetics, 125, 255–271.

    Article  Google Scholar 

  • Bibi, A., Oosterhuis, D., & Gonias, E. (2008). Photosynthesis, quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. Journal of Cotton Science, 12, 150–159.

    CAS  Google Scholar 

  • Bishop, J., Potts, S. G., & Jones, H. E. (2016). Susceptibility of Faba Bean (Vicia faba L.) to heat stress during floral development and anthesis. Journal of Agronomy and Crop Science, 202, 508–517.

    Article  CAS  Google Scholar 

  • Blum, A., & Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 21, 43–47.

    Article  Google Scholar 

  • Blum, A., Klueva, N., & Nguyen, H. T. (2001). Wheat cellular thermotolerance is related to yield under heat stress. Euphytica, 117, 117–123.

    Article  Google Scholar 

  • Borrell, A., Hammer, G., & Oosterom, E. (2001). Stay‐green: A consequence of the balance between supply and demand for nitrogen during grain filling? Annals of Applied Biology, 138, 91–95.

    Article  Google Scholar 

  • Burke, J. J., Mahan, J. R., & Hatfield, J. L. (1988). Crop-specific thermal kinetic windows in relation to wheat and cotton biomass production. Agronomy Journal, 80, 553–556.

    Article  Google Scholar 

  • Burke, J. J., & Chen, J. (2015). Enhancement of reproductive heat tolerance in plants. PLoS One, 10, e0122933.

    Article  CAS  Google Scholar 

  • Calderini, D. F., Reynolds, M. P., & Slafer, G. A. (2006). Source–sink effects on grain weight of bread wheat, durum wheat, and triticale at different locations. Crop & Pasture Science, 57, 227–233.

    Article  Google Scholar 

  • Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 27, 1–5.

    Google Scholar 

  • Chauhan, H., Khurana, N., Nijhavan, A., Khurana, J. P., & Khurana, P. (2012). The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant, Cell and Environment, 35, 1912–1931.

    Article  CAS  Google Scholar 

  • Chauhan, S., Srivalli, S., Nautiyal, A., & Khanna-Chopra, R. (2009). Wheat cultivars differing in heat tolerance show a differential response to monocarpic senescence under high-temperature stress and the involvement of serine proteases. Photosynthetica, 47, 536–547.

    Article  CAS  Google Scholar 

  • Chao, C. C. T., & Robert, R. K. (2007). The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. Hortscience, 42(5), 1077–1082.

    Google Scholar 

  • Chen, W. R., Zheng, J. S., Li, Y. Q., & Guo, W. D. (2012). Effects of high temperature on photosynthesis, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in fingered citron. Russian Journal of Plant Physiology, 59, 732–740.

    Article  CAS  Google Scholar 

  • Cossani, C. M., & Reynolds, M. P. (2012). Physiological traits for improving heat tolerance in wheat. Plant Physiology, 160, 1710–1718.

    Article  CAS  Google Scholar 

  • Cottee, N. S., Bange, M. P., Wilson, I. W., & Tan, D. K. (2012). Developing controlled environment screening for high-temperature tolerance in cotton that accurately reflects performance in the field. Functional Plant Biology, 39, 670–678.

    Article  CAS  Google Scholar 

  • Covell, S., Ellis, R. H., Roberts, E. H., & Summerfield, R. J. (1986). The influence of temperature on seed germination rate in grain legumes: A comparison of chickpea, lentil, soybean, and cowpea at constant temperatures. Journal of Experimental Botany, 37, 705–715.

    Article  Google Scholar 

  • Crawford, A. J., McLachlan, D. H., Hetherington, A. M., & Franklin, K. A. (2012). High temperature exposure increases plant cooling capacity. Current Biology, 22, 396–397.

    Article  CAS  Google Scholar 

  • Cui, L., Cao, R., Li, J., Zhang, L., & Wang, J. (2006). High temperature effects on ammonium assimilation in leaves of two Festuca arundinacea cultivars with different heat susceptibility. Plant Growth Regulation, 49, 127–136.

    Article  CAS  Google Scholar 

  • Devasirvatham, V., DKY, T., Trethowan, R. M., Gaur, P. M., & Mallikarjuna, N. (2010). Food security from sustainable agriculture. Proceedings of the 15th Australian Society of Agronomy Conference: Impact of high temperature on the reproductive stage of chickpea (pp. 15–18). Lincoln: Australian Society of Agronomy.

    Google Scholar 

  • Devasirvatham, V., Tan, D. K., & Trethowan, R. M. (2016). Breeding strategies for enhanced plant tolerance to heat stress. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), Advances in plant breeding strategies: Agronomic, abiotic and biotic stress traits (pp. 447–469). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Devasirvatham, V., Tan, D. K. Y., Gaur, P. M., Raju, T. N., & Trethowan, R. M. (2012). High temperature tolerance in chickpea and its implications for plant improvement. Crop & Pasture Science, 63, 419–428.

    Article  Google Scholar 

  • Djanaguiraman, M., Prasad, P. V. V., & Seppanen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 48, 999–1007.

    Article  CAS  Google Scholar 

  • Downton, W., John, S., Joseph, A. B., & Jeffrey, R. S. (1984). Tolerance of photosynthesis to high temperature in desert plants. Plant Physiology, 74, 786–790.

    Article  CAS  Google Scholar 

  • Driedonks, N., Rieu, I., & Vriezen, W. H. (2016). Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction, 29, 67.

    Article  CAS  Google Scholar 

  • Dupont, F. M., Hurkman, W. J., Vensel, W. H., Tanaka, C., Kothari, K. M., Chung, O. K., & Altenbach, S. B. (2006). Protein accumulation and composition in wheat grains: Effects of mineral nutrients and high temperature. European Journal of Agronomy, 25, 96–107.

    Article  CAS  Google Scholar 

  • Edmeades, G. O., Chapman, S. C., & Lafitte, H. R. (1999). Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Science, 39, 1306–1315.

    Article  Google Scholar 

  • Endo, M., Tohru, T., Kazuki, H., Shingo, K., Kentaro, Y., Masahiro, O., Atsushi, H., Masao, W., & Makiko, K. K. (2009). High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant and Cell Physiology, 50, 1911–1922.

    Article  CAS  Google Scholar 

  • Fahad, S., Hussain, S., Saud, S., Hassan, S., Ihsan, Z., Shah, A. N., & Alghabari, F. (2016). Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature. Frontiers in Plant Science, 7, 1250.

    Article  Google Scholar 

  • Food and Agriculture Organisation (FAO) of the United Nations. (2009). Declaration of the World Summit on Food Security, Rome, November 16–18, 2009.

    Google Scholar 

  • Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30, 491–507.

    Article  Google Scholar 

  • Fischer, G., Shah, M., & Van, V. H. (2002). Climate change and agricultural vulnerability, world summit on sustainable development. Laxenburg: IIASA.

    Google Scholar 

  • Fischer, R. (2007). Understanding the physiological basis of yield potential in wheat. Journal of Agricultural Science-Cambridge, 145, 99.

    Article  Google Scholar 

  • Füleky, G. (2009). Cultivated plants, primarily as food resources. Encyclopedia of life supper systems (EOLSS) (Vol. I). Paris: UNESCO.

    Google Scholar 

  • Gate, P., & Brisson, N. (2010). Advancement of phenological stages and shortening of phases. In N. Brisson & F. Levrault (Eds.), Climate change, agriculture and forests in France: simulations of the impacts on the main species. The Green Book of the CLIMATOR project (2007–2010) (pp. 65–78). Angers, France: ADEME.

    Google Scholar 

  • Gerwick, B. C., George, J. W., & Ernest, G. U. (1977). Effects of temperature on the Hill reaction and photophosphorylation in isolated cactus chloroplasts. Plant Physiology, 60, 430–432.

    Article  CAS  Google Scholar 

  • Gibson, L. R., & Paulsen, G. M. (1999). Yield components of wheat grown under high temperature stress during reproductive growth. Crop Science, 39, 1841–1846.

    Article  Google Scholar 

  • Giorno, F., Wolters-Arts, M., Mariani, C., & Rieu, I. (2013). Ensuring reproduction at high temperatures: The heat stress response during anther and pollen development. Plants, 2, 489–506.

    Article  CAS  Google Scholar 

  • Gross, Y., & Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Research, 36, 201–212.

    Article  Google Scholar 

  • Grigorova, B., Vassileva, V., Klimchuk, D., Vaseva, I., Demirevska, K., & Feller, U. (2012). Drought, high temperature, and their combination affect ultrastructure of chloroplasts and mitochondria in wheat (Triticum aestivum L.) leaves. Journal of Plant Interactions, 7, 204–213.

    Article  Google Scholar 

  • Hameed, A., Goher, M., & Iqbal, N. (2012). Heat stress-induced cell death, changes in antioxidants, lipid peroxidation, and protease activity in wheat leaves. Journal of Plant Growth Regulation, 31, 283–291.

    Article  CAS  Google Scholar 

  • Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-Delmotte, V., Russell, G., Tselioudis, G., Cao, J., & Rignot, E. (2015). Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2°C global warming is highly dangerous. Atmospheric Chemistry and Physics, 15, 20059–20179.

    Google Scholar 

  • Harris, K., Subudhi, P., Borrell, A., Jordan, D., Rosenow, D., Nguyen, H., Klein, P., Klein, R., & Mullet, J. (2007). Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. Journal of Experimental Botany, 58, 327–338.

    Article  CAS  Google Scholar 

  • Hedhly, A. (2011). Sensitivity of flowering plant gametophytes to temperature fluctuations. Environmental and Experimental Botany, 74, 9–16.

    Article  Google Scholar 

  • Hossain, A., Teixeira da Silva, J. A., Lozovskaya, M. V., & Zvolinsky, V. P. (2012). High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. Saudi Journal of Biological Sciences, 19, 473–487.

    Article  Google Scholar 

  • IPCC. (2007). In S. Solomon, D. Qin, M. Manning, R. B. Alley, T. Berntsen, N. L. Bindoff, & Z. C. Chen (Eds.), Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2013). In T. F. Stocker Qin, D. Plattner, G. K. Tignor, M. Allen, S. K. Boschung, & J. Naue (Eds.), Summary for policymakers climate change 2013: The physical science basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Islam, M. T. (2011). Effect of temperature on photosynthesis, yield attributes and yield of tomato genotypes. International Journal of Experimental Agriculture, 2, 8–11.

    Google Scholar 

  • Jha, U. C., Bohra, A., & Singh, N. P. (2014). Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding, 133, 679–701.

    Article  Google Scholar 

  • Jones, H. G. (2013). Plants and microclimate: A quantitative approach to environmental plant physiology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Jordan, D. B., & Ogren, W. L. (1984). The CO2/O2 specificity of ribulose 1, 5-bisphosphate carboxylase/oxygenase. Planta, 161, 308–313.

    Article  CAS  Google Scholar 

  • Kalra, N., Chakraborty, D., Sharma, A., Rai, H. K., Jolly, M., Chander, S., Kumar, P. R., Bhadraray, S., Barman, D., Mittal, R. B., & Lal, M. (2008). Effect of increasing temperature on yield of some winter crops in northwest India. Current Science, 82–88.

    Google Scholar 

  • Kaur, P., Ghai, N., & Sangha, M. K. (2009). Induction of thermotolerance through heat acclimation and salicylic acid in brassica species. African Journal of Biotechnology, 8, 619.

    CAS  Google Scholar 

  • Kaushal, N., Gupta, K., Bhandhari, K., Kumar, S., Thakur, P., & Nayyar, H. (2011). Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiology and Molecular Biology of Plants, 17, 203.

    Article  CAS  Google Scholar 

  • Khanna-Chopra, R., & Chauhan, S. (2015). Wheat cultivars differing in heat tolerance show a differential response to oxidative stress during monocarpic senescence under high temperature stress. Protoplasma, 1, 11.

    Google Scholar 

  • Kim, K., & Portis, A. R. (2005). Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant and Cell Physiology, 46, 522–530.

    Article  CAS  Google Scholar 

  • Kreslavski, V. D., Lyubimov, V. Y., Shabnova, N. I., Balakhnina, T. I., & Kosobryukhov, A. A. (2009). Heat-induced impairments and recovery of photosynthetic machinery in wheat seedlings. Role of light and prooxidant-antioxidant balance. Physiology and Molecular Biology of Plants, 15, 115–122.

    Article  CAS  Google Scholar 

  • Krishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy, V. R. (2011). High-temperature effects on rice growth, yield, and grain quality. In Advances in agronomy (Vol. 111, pp. 87–206). Academic Press.

    Google Scholar 

  • Kuchel, H., Williams, K., Langridge, P., Eagles, H. A., & Jefferies, S. P. (2007). Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction. Theoretical and Applied Genetics, 115, 1015–1027.

    Article  CAS  Google Scholar 

  • Kumar, R. R., Goswami, S., Sharma, S. K., Singh, K., Gadpayle, K. A., Singh, S. D., & Rai, R. D. (2013). Differential expression of heat shock protein and alteration in osmolyte accumulation under heat stress in wheat. Journal of Plant Biochemistry and Biotechnology, 22, 16–26.

    Article  CAS  Google Scholar 

  • Kumar, R. R., Goswami, S., Sharma, S. K., Singh, K., Gadpayle, K. A., Kumar, N., Rai, G. K., Singh, M., & Rai, R. D. (2012). Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. International Journal of Plant Physiology and Biochemistry, 4, 83–91.

    CAS  Google Scholar 

  • Kumar, S., Gupta, D., & Nayyar, H. (2012a). Comparative response of maize and rice genotypes to heat stress: Status of oxidative stress and antioxidants. Acta Physiologiae Plantarum, 34, 75–86.

    Article  CAS  Google Scholar 

  • Kumar, S., Kaushal, N., Nayyar, H., & Gaur, P. (2012b). Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiologiae Plantarum, 34, 1651–1658.

    Article  CAS  Google Scholar 

  • Kumari, M., Singh, V. P., Tripathi, R., & Joshi, A. K. (2007). Variation for staygreen trait and its association with canopy temperature depression and yield traits under terminal heat stress in wheat. In H. T. Buck, J. R. Nisi, & N. Salomon (Eds.), Wheat production in stressed environments (pp. 357–363). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Larcher, W. (1995). Physiological plant ecology. New York, NY: Springer.

    Book  Google Scholar 

  • Lee, J. H., Hubel, A., & Schoffl, F. (1995). Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. The Plant Journal, 8, 603–612.

    Article  CAS  Google Scholar 

  • Liu, Z., Yuan, Y. L., Liu, S. Q., Yu, X. N., & Rao, L. Q. (2006). Screening for high-temperature tolerant cotton cultivars by testing in vitro pollen germination, pollen tube growth and boll retention. Journal of Integrative Plant Biology, 48, 706–714.

    Article  Google Scholar 

  • Lobell, D. B., & Gregory, P. A. (2003). Climate and management contributions to recent trends in US agricultural yields. Science, 299, 1032–1032.

    Article  CAS  Google Scholar 

  • Lobell, D., & Gourdji, S. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160, 1686–1697.

    Article  CAS  Google Scholar 

  • Lopes, M. S., & Reynolds, M. P. (2010). Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology, 37, 147–156.

    Article  Google Scholar 

  • Lopes, M. S., & Reynolds, M. P. (2012). Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of Experimental Botany, 63, 3789–3798.

    Article  CAS  Google Scholar 

  • Lotze-Campen, H., Schellnhuber, H. J., et al. (2009). Climate impacts and adaptation options in agriculture: What we know and what we don’t know. Journal für Verbraucherschutz und Lebensmittelsicherheit, 4, 145–150.

    Article  Google Scholar 

  • Lujan, R., Fernando, L., Luz, M., Rita, B., Gladys, I. C., & Nieto‐sotelo, J. (2009). Small heat‐shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilana var. Weber. Plant, Cell and Environment, 32, 1791–1803.

    Article  CAS  Google Scholar 

  • Machado, S., & Paulsen, G. M. (2001). Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant and Soil, 233, 179–187.

    Article  CAS  Google Scholar 

  • Malik, M. K., Slovin, J. P., Hwang, C. H., & Zimmerman, J. L. (1999). Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. The Plant Journal, 20, 89–99.

    Article  CAS  Google Scholar 

  • Manske, G. G. B., Ortiz-Monasterio, J. I., Van Ginkel, M., Gonzalez, R. M., Rajaram, S., Molina, E., & Vlek, P. L. G. (2000). Traits associated with improved P-uptake efficiency in CIMMYT’s semi dwarf spring bread wheat grown on an acid Andisol in Mexico. Plant and Soil, 221, 189–204.

    Article  CAS  Google Scholar 

  • Maryam, M., Fatima, B., Haider, M. S., Abbas, S., Naqvi, M., Ahmad, R., & Khan, I. A. (2015). Evaluation of pollen viability in date palm cultivars under different storage temperatures. Pakistan Journal of Botany, 47, 377–381.

    CAS  Google Scholar 

  • Mason, R. E., Mondal, S., Beecher, F. W., Pacheco, A., Jampala, B., Ibrahim, A. M., & Hays, D. B. (2010). QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica, 174, 423–436.

    Article  Google Scholar 

  • McCarthy, J. J. (2001). Climate change: Impacts, adaptation, and vulnerability: Contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • McDonald, G. K., & Paulsen, G. M. (1997). High temperature effects on photosynthesis and water relations of grain legumes. Plant and Soil, 196, 47–58.

    Article  CAS  Google Scholar 

  • Mohammed, A. R., & Tarpley, L. (2011). High night temperature and plant growth regulator effects on spikelet sterility, grain characteristics and yield of rice (Oryza sativa L.) plants. Canadian Journal of Plant Science, 91, 283–291.

    Article  CAS  Google Scholar 

  • Mondal, S. (2012). Defining the molecular and physiological role of leaf cuticular waxes in reproductive stage heat tolerane in wheat. Doctoral dissertation, Texas A and M University, College Station.

    Google Scholar 

  • Nobel, P. S. (1988). Environmental biology of agaves and cacti. New York, NY: Cambridge University Press.

    Google Scholar 

  • Nobel, P. S., & Smith, S. D. (1983). High and low temperature tolerances and their relationships to distribution of agaves. Plant, Cell and Environment, 6, 711–719.

    Google Scholar 

  • Nobel, P. S., & De la Barrera, E. (2002). High temperatures and net CO2 uptake, growth, and stem damage for the hemiepiphytic cactus Hylocereus undatus. Biotropica, 34, 225–231.

    Article  Google Scholar 

  • Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Biology, 49, 249–279.

    Article  CAS  Google Scholar 

  • Olesen, J. E., & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16, 239–262.

    Article  Google Scholar 

  • Ortiz, R., Braun, H. J., Crossa, J., Crouch, J. H., Davenport, G., Dixon, J., Dreisigacker, S., Duveiller, E., He, Z., & Huerta, J. (2008). Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genetic Resources and Crop Evolution, 55, 1095–1140.

    Article  Google Scholar 

  • Oshino, T., Abiko, M., Saito, R., Ichiishi, E., Endo, M., Kawagishi-Kobayashi, M., & Higashitani, A. (2007). Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Molecular Genetics and Genomics, 278, 31–42.

    Article  CAS  Google Scholar 

  • Palta, J. A., Kobata, T., Turner, N. C., & Fillery, I. R. (1994). Remobilisation of carbon and nitrogen in wheat as influenced by postanthesis water deficits. Crop Science, 34, 118–124.

    Article  Google Scholar 

  • Patrick, J. W., & Stoddard, F. L. (2010). Physiology of flowering and grain filling in faba bean. Field Crops Research, 115, 234–242.

    Article  Google Scholar 

  • Peck, A. W., & McDonald, G. K. (2010). Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant and Soil, 337, 355–374.

    Article  CAS  Google Scholar 

  • Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G. S., Khush, G. S., & Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101, 9971–9975.

    Article  CAS  Google Scholar 

  • Pettigrew, W. T. (2008). The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Science, 48, 278–285.

    Article  Google Scholar 

  • Pinto, R. S., & Reynolds, M. P. (2015). Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theoretical and Applied Genetics, 128, 575–585.

    Article  CAS  Google Scholar 

  • Prasad, P., Pisipati, S., Ristic, Z., Bukovnik, U., & Fritz, A. (2008). Impact of nighttime temperature on physiology and growth of spring wheat. Crop Science, 48, 2372–2380.

    Article  Google Scholar 

  • Radin, J. W. (1992). Reconciling water-use efficiency of cotton in field and laboratory. Crop Science, 32, 13–18.

    Article  Google Scholar 

  • Rahman, H., Malik, S. A., & Saleem, M. (2004). Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crops Research, 85, 149–158.

    Article  Google Scholar 

  • Rahman, H., Malik, S. A., & Saleem, M. (2005). Inheritance of seed physical traits in upland cotton under different temperature regimes. Spanish Journal of Agricultural Research, 3, 225–231.

    Article  Google Scholar 

  • Rani, B., Dhawan, K., Jain, V., Chhabra, M. L., & Singh, D. (2013). High temperature induced changes in antioxidative enzymes in Brassica juncea (L) Czern and Coss. M. Sc. Dissertations, CCS HAU Hisar, India.

    Google Scholar 

  • Rauf, S., Khan, T. M., Naveed, A., & Munir, H. (2007). Modified path to high lint yield in upland cotton (Gossypium hirsutum L.) under two temperature regimes. Turkish Journal of Biology, 31, 119–126.

    Google Scholar 

  • Reddy, V., Baker, D., & Hodges, H. (1991). Temperature effects on cotton canopy growth, photosynthesis, and respiration. Agronomy Journal, 83, 699–704.

    Article  Google Scholar 

  • Reynolds, M., & Langridge, P. (2016). Physiological breeding. Current Opinion in Plant Biology, 31, 162–171.

    Article  Google Scholar 

  • Reynolds, M., & Trethowan, R. (2007). Physiological interventions in breeding for adaptation to abiotic stress. Frontis, 21, 127–144.

    Google Scholar 

  • Reynolds, M. P., Pierre, C. S., Saad, A. S., Vargas, M., & Condon, A. G. (2007). Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Science, 47(Suppl 3), S-172–S-189.

    Google Scholar 

  • Reynolds, M. P., Trethowan, R., Crossa, J., Vargas, M., & Sayre, K. D. (2004). Erratum to physiological factors associated with genotype by environment interaction in wheat. Field Crops Research, 85, 253–274.

    Article  Google Scholar 

  • Richards, R. (1996). Defining selection criteria to improve yield under drought. Plant Growth Regulation, 20, 157–166.

    Article  CAS  Google Scholar 

  • Rodrigo, J., & Herrero, M. (2002). Effects of pre-blossom temperatures on flower development and fruit set in apricot. Scientia Horticulturae, 92, 125–135.

    Article  Google Scholar 

  • Saini, H. S., Sedgley, M., & Aspinall, D. (1983). Effect of heat-stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Functional Plant Biology, 10, 137–144.

    Article  Google Scholar 

  • Saini, H. S., Sedgley, M., & Aspinall, D. (1984). Development anatomy in wheat of male sterility induced by heat stress, water deficit or abscisic acid. Functional Plant Biology, 11, 243–253.

    Article  Google Scholar 

  • Sakata, T., Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y., & Higashitani, N. (2010). Auxins reverse plant male sterility caused by high temperatures. Proceedings of the National Academy of Sciences USA, 107, 8569–8574.

    Article  CAS  Google Scholar 

  • Sarwar, M., Saleem, M., Najeeb, U., Shakeel, A., Ali, S., & Bilal, M. (2017). Hydrogen peroxide reduces heat‐induced yield losses in cotton (Gossypium hirsutum L.) by protecting cellular membrane damage. Journal of Agronomy and Crop Science, 203, 429–441.

    Article  CAS  Google Scholar 

  • Schapendonk, A., Xu, H., Van, D. P. P., & Spiertz, J. (2007). Heat-shock effects on photosynthesis and sink-source dynamics in wheat (Triticum aestivum L.). Journal of Life Sciences, 55, 37–54.

    Google Scholar 

  • Sharkey, T. D., et al. (2005). Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment, 28, 269–277.

    Article  CAS  Google Scholar 

  • Sharma‐Natu, P., Sumesh, K. V., & Ghildiyal, M. C. (2010). Heat shock protein in developing grains in relation to thermotolerance for grain growth in wheat. Journal of Agronomy and Crop Science, 196, 76–80.

    Article  CAS  Google Scholar 

  • Singh, R. P., Prasad, P. V. V., Sunita, K., Giri, S. N., & Reddy, K. R. (2007). Influence of high temperature and breeding for heat tolerance in cotton. Advances in Agronomy, 93, 313–385.

    Article  CAS  Google Scholar 

  • Song, G., Wang, M., Zeng, B., Zhang, J., Jiang, C., Hu, Q., Geng, G., & Tang, C. (2015). Anther response to high-temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton. Planta, 241, 1271–1285.

    Article  CAS  Google Scholar 

  • Summerfield, R. J., Hadley, P., Roberts, E. H., Minchin, F. R., & Rawsthorne, S. (1984). Sensitivity of Chickpeas (Cicer arietinum) to hot temperatures during the reproductive period. Experimental Agriculture, 20, 77–93.

    Article  Google Scholar 

  • Sumesh, K. V., Sharma-Nat, P., & Ghildiyal, M. C. (2008). Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains. Biologia Plantarum, 52, 749–753.

    Article  CAS  Google Scholar 

  • Suzuki, K., Tsukaguchi, T., Takeda, H., & Egawa, Y. (2001). Decrease of pollen stainability of green bean at high temperatures and relationship to heat tolerance. Journal of the American Society for Horticultural Science, 126, 571–574.

    Google Scholar 

  • Swindell, W. R., Huebner, M., & Weber, A. P. (2007). Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 8, 125.

    Article  CAS  Google Scholar 

  • Tan, W., Meng, Q. W., Brestic, M., Olsovska, K., & Yang, X. (2011). Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. Journal of Plant Physiology, 168, 2063–2071.

    Article  CAS  Google Scholar 

  • Teixeira, E. I., Fischer, G., Van Velthuizen, H., Walter, C., & Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 170, 206–215.

    Article  Google Scholar 

  • Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327, 818–822.

    Article  CAS  Google Scholar 

  • Towill, L. E., & Mazur, P. (1975). Studies on the reduction of 2, 3, 5-triphenyltetrazolium chloride as a viability assay for plant tissue cultures. Canadian Journal of Botany, 53, 1097–1102.

    Article  Google Scholar 

  • Uga, Y., Kitomi, Y., Ishikawa, S., & Yano, M. (2015). Genetic improvement for root growth angle to enhance crop production. Breeding Science, 65, 111.

    Article  CAS  Google Scholar 

  • Van Zanten, M., Voesenek, L. A. C. J., Peeters, A. J. M., & Millenaar, F. F. (2009). Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis. Plant Physiology, 151, 1446–1458.

    Article  CAS  Google Scholar 

  • Vettakkorumakankav, N. N., Falk, D., Saxena, P., & Fletcher, R. A. (1999). A crucial role for gibberellins in stress protection of plants. Plant and Cell Physiology, 40, 542–548.

    Article  CAS  Google Scholar 

  • Vignjevic, M., Xiao, W., Jørgen, E. O., & Bernd, W. (2015). Traits in spring wheat cultivars associated with yield loss caused by a heat stress episode after anthesis. Journal of Agronomy and Crop Science, 1, 32–48.

    Article  CAS  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223.

    Article  Google Scholar 

  • Wang, J., Gan, Y. T., Clarke, F., & McDonald, C. L. (2006). Response of chickpea yield to high temperature stress during reproductive development. Crop Science, 46, 2171–2178.

    Article  Google Scholar 

  • Wang, X., Cai, J., Jiang, D., Liu, F., Dai, T., & Cao, W. (2011). Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology, 168, 585–593.

    Article  CAS  Google Scholar 

  • Wardlaw, I. F., Dawson, I. A., & Munibi, P. (1989). The tolerance of wheat to high temperatures during reproductive growth. 2. Grain development. Crop & Pasture Science, 40, 15–24.

    Article  Google Scholar 

  • Yang, F., Jørgensen, A. D., Li, H., Sondergaard, I., Finnie, C., Svensson, B., Jiang, D., Wollenweber, B., & Jacobsen, S. (2011). Implications of high‐temperature events and water deficits on protein profiles in wheat (Triticum aestivum L. cv. Vinjett) grain. Proteomics, 11, 1684–1695.

    Article  CAS  Google Scholar 

  • Yang, X., Liang, Z., & Lu, C. (2005). Genetic engineering of the biosynthesis of glycine betaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiology, 138, 2299–2309.

    Article  CAS  Google Scholar 

  • Yoshida, S. (1981). Fundamentals of rice crop science. Int. Rice Res. Inst.

    Google Scholar 

  • Zutta, B. R., Nobel, P. S., Aramians, A. M., & Sahaghian, A. (2011). Low-and high-temperature tolerance and acclimation for chlorenchyma versus meristem of the cultivated cacti Nopalea cochenillifera, Opuntia robusta, and Selenicereus megalanthus. Journal of Botany, 2011, 347168. https://doi.org/10.1155/2011/347168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ullah Najeeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Najeeb, U., Tan, D.K.Y., Sarwar, M., Ali, S. (2019). Adaptation of Crops to Warmer Climates: Morphological and Physiological Mechanisms. In: Sarkar, A., Sensarma, S., vanLoon, G. (eds) Sustainable Solutions for Food Security . Springer, Cham. https://doi.org/10.1007/978-3-319-77878-5_2

Download citation

Publish with us

Policies and ethics