Skip to main content

Introduction

  • Chapter
  • First Online:
Sustainable Solutions for Food Security

Abstract

More than any other human activity, agriculture is fundamental to the survival and well-being of the human population. In 2016, a total of 2.73 Gt of food grains were produced worldwide. This fundamental food source is alone enough to supply sufficient nutritional kilocalories for the entire global population. And nutrition is supplemented by the many other crops and livestock that are part of the overall food system (FAO 2016). Yet, in the same year, it is estimated that around 815 million people, some 11% of the world’s population were chronically hungry. Moreover, the number was higher (by 38 million) than in the previous year and this rise can largely be attributed to conflict combined with climate effects such as more frequent droughts or floods (FAO 2017). These two issues are also connected. Exacerbated by climate-related shocks, the number of conflicts is on the rise augmenting the challenges of maintaining food security. Indeed, existing household level poverty and, at the macro level, the slowing down of national/regional economies has drained foreign exchange and fiscal revenues, eventually affecting both food availability through reduced import capacity and food access through reduced fiscal space to protect poor households against rising domestic food prices have worsened food security. The global population is expected to increase from 7.6 billion in 2017 to 8.5 billion by 2030, and, perhaps, over 9.5 billion by 2050 (UN). In some regions, such as sub-Saharan Africa, the population is likely to double by 2050 (PRB 2013). Whilst uncontrolled population growth is posing a major challenge to continuing effort in improving global food security; climate change has begun to pose a formidable threat to our surrounding agro-ecosystem. Based on the Intergovernmental Panel on Climate Change (IPCC) 2014 report, the following schematic diagram shows the cascading effects of climate change on food insecurity (IPCC 2014) (see Fig. 1.1, page 17).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adger, W. N., Agrawala, S., Mirza, M. M. Q., Conde, C., O’Brien, K., Pulhin, J., et al. (2007). Assessment of adaptation practices, management options, constraints and capacity. Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge; New York, NY: Cambridge University Press. Retrieved December 22, 2017, from https://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4-wg2-chapter17.pdf.

    Google Scholar 

  • Asfaw, S., & Lipper, L. (2011). Economics of PGRFA management for adaptation to climate change: A review of selected literature. Commission on Genetic Resources for Food and Agriculture. Background Study Paper No. 60. Rome: FAO. Retrieved December 22, 2017, from http://www.fao.org/docrep/meeting/023/mb695e.pdf.

    Google Scholar 

  • Backlund, P., Janetos, A., & Schimel, D. (2008). The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Washington, DC: U.S. Department of Agriculture. 362.

    Google Scholar 

  • Battisti, D. S., & Naylor, R. L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240–244.

    Article  CAS  Google Scholar 

  • Brander, K. M. (2007). Global fish production and climate change. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19709–19714. https://doi.org/10.1073/pnas.0702059104.

    Article  Google Scholar 

  • Brown, M., & Funk, C. C. (2008). Food security under climate change. Science, 319, 580–581.

    Article  CAS  Google Scholar 

  • Cairns, J. E., Sonder, K., Zaidi, P. H., Verhulst, N., Mahuku, G., Babu, R., et al. (2012). Maize production in a changing climate: Impacts, adaptation, and mitigation strategies. Advances in Agronomy, 114, 1–57.

    Article  CAS  Google Scholar 

  • Cairns, J. E., Hellin, J., Sonder, K., Araus, J. L., MacRobert, J. F., Thierfelder, C., et al. (2013). Adapting maize production to climate change in sub-Saharan Africa. Food Security, 5, 345–360. https://doi.org/10.1007/s12571-013-0256-x.

    Article  Google Scholar 

  • Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R., Zeller, D., et al. (2010). Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16, 24–35.

    Article  Google Scholar 

  • Ciais, P., Schelhaas, M. J., Zaehle, S., Piao, L., Cescatti, A., Liski, J., et al. (2008). Carbon accumulation in European forests. Nature Geoscience, 1(7), 425–429.

    Article  CAS  Google Scholar 

  • CNN. (2016). Mercury rising: India records its highest temperature ever. May 23. Retrieved December 22, 2017, from http://edition.cnn.com/2016/05/20/asia/india-record-temperature/.

  • Collier, P., Conway, G., & Venables, T. (2008). Climate change and Africa. Oxford Review of Economic Policy, 24, 337–353.

    Article  Google Scholar 

  • Cooper, P. J. M., Dimes, J., Rao, K. P. C., Shapiro, B., Shiferaw, B., & Twomlow, S. (2008). Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agriculture, Ecosystems and Environment, 126, 24–35.

    Article  Google Scholar 

  • Cooper, M., Messina, C. D., Podlich, D., Radu Totir, L., Baumgarten, A., & Hausmann, N. J. (2014). Predicting the future of plant breeding: Complementing empirical evaluation with genetic prediction. Crop & Pasture Science, 65, 311–336. https://doi.org/10.1071/CP14007.

    Article  CAS  Google Scholar 

  • Crescio, M. I., Forastiere, F., Maurella, C., Ingravalle, F., & Ru, G. (2010). Heat-related mortality in dairy cattle: A case crossover study. Preventive Veterinary Medicine, 97(3), 191–197.

    Article  CAS  Google Scholar 

  • Cressman, K. (2013). Climate change and locusts in the WANA Region. In M. V. K. Sivakumar, R. Lal, R. Selvaraju, & I. Hamdan (Eds.), Climate change and food security in West Asia and North Africa (pp. 131–143). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-6751-5_7.

    Chapter  Google Scholar 

  • Deryng, D., Conway, D., Ramankutty, N., Price, J., & Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters, 9, 034011. Retrieved December 22, 2017, from http://iopscience.iop.org/article/10.1088/1748-9326/9/3/034011/pdf.

    Article  Google Scholar 

  • Ericksen, P., Thornton, P., Notenbaert, A., Cramer, L., Jones, P., & Herrero, M. (2011). Mapping hotspots of climate change and food insecurity in the global tropics. CCAFS Report 5. Copenhagen: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Retrieved December 22, 2017, from www.ccafs.cgiar.org.

    Google Scholar 

  • FAO. (2008). Climate change and food security: A framework document. Rome: Food Agriculture Organization of the United Nations.

    Google Scholar 

  • FAO. (2011). The State of food and agriculture 2010–2011. Women in agriculture: Closing the gender gap for development. Rome: Food Agriculture Organization of the United Nations. Retrieved December 22, 2017, from http://www.fao.org/docrep/013/i2050e/i2050e.pdf.

    Google Scholar 

  • FAO. (2015). Coping with climate change – The roles of genetic resources for food and agriculture. Rome: Food Agriculture Organization of the United Nations. Retrieved December 22, 2017, from http://www.fao.org/3/a-i3866e.pdf.

    Google Scholar 

  • FAO. (2016). The state of food and agriculture: Climate change, agriculture and food security. Rome: Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/publications/sofa/2016/en/.

    Google Scholar 

  • FAO, IFAD, UNICEF, WFP, WHO. (2017). The State of food security and nutrition in the world 2017. Building resilience for peace and food security. Rome: Food Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/3/a-I7695e.pdf.

    Google Scholar 

  • Fischer, R. A., Byerlee, D., & Edmeades, G. O. (2014). Crop yields and global food security: Will yield increase continue to feed the world? Canberra, ACT: Australian Centre for International Agricultural Research. Retrieved December 22, 2017, from http://aciar.gov.au/publication/mn158.

    Google Scholar 

  • Frieler, K., Levermann, A., Elliott, J., Heinke, J., Arneth, A., Bierkens, M. F. P., et al. (2015). A framework for the cross-sectoral integration of multi-model impact projections: Land use decisions under climate impacts uncertainties. Earth System Dynamics, 6, 447–460. https://doi.org/10.5194/esd-6-447-2015.

    Article  Google Scholar 

  • Gitz, V., & Meybeck, A. (2012). Risks, vulnerabilities and resilience in a context of climate change. In A. Meybeck, J. Lankoski, S. Redfern, N. Azzu, & V. Gitz (Eds.), Building resilience for adaptation to climate change in the agriculture sector, Proceedings of a joint FAO/OECD Workshop (pp. 19–36). Rome: FAO. Retrieved December 22, 2017, from http://www.fao.org/docrep/017/i3084e/i3084e.pdf.

    Google Scholar 

  • Gong, F. P., Wu, X., Zhang, H., Chen, Y., & Wang, W. (2015). Making better maize plants for sustainable grain production in a changing climate. Frontiers in Plant Science, 6, 835. https://doi.org/10.3389/fpls.2015.00835.

    Article  Google Scholar 

  • HLPE. (2011). Price volatility and food security. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security (report 1). Rome. Retrieved December 22, 2017, from http://www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE-price-volatility-and-food-security-report-July-2011.pdf.

  • HLPE. (2012). Food security and climate change. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security (report 3). Rome. Retrieved December 22, 2017, from http://www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE_Reports/HLPE-Report-3-Food_security_and_climate_change-June_2012.pdf.

  • Hoddinot, J. (2006). Shocks and their consequences across and within households in rural Zambia. Journal of Development Studies, 42(2), 301–321.

    Article  Google Scholar 

  • Horton, D. E., Johnson, N. C., Singh, D., Swain, D. L., Rajaratnam, B., & Diffenbaugh, N. S. (2015). Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465–469. https://doi.org/10.1038/nature14550.

    Article  CAS  Google Scholar 

  • Hossain, A., & Teixeira da Silva, J. A. (2013). Wheat production in Bangladesh: Its future in the light of global warming. AoB Plants, 5, pls042. https://doi.org/10.1093/aobpla/pls042.

    Article  Google Scholar 

  • IPCC. (2007). Fourth assessment report: Synthesis. Retrieved December 22, 2017, from http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf.

  • IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation - Special Report of the Intergovernmental Panel on Climate Change. In C. B. Field, C. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, et al. (Eds.). Cambridge; New York, NY: Cambridge University Press. 582 pp. Retrieved December 22, 2017, from https://www.ipcc.ch/pdf/special-reports/srex/SREX_Full_Report.pdf.

    Google Scholar 

  • IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, et al. (Eds.), Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for policymakers. Cambridge; New York, NY: Cambridge University Press. 1535 p. Retrieved December 22, 2017, from https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WGIAR5_SPM_brochure_en.pdf.

    Google Scholar 

  • IPCC. (2014). Climate change 2014: Synthesis report. In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC. 151 pp. Retrieved December 22, 2017, from http://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf.

    Google Scholar 

  • Kumwenda, J. D. T., Waddington, S. R., Snapp, S. S., Jones, R. B., & Blackie, M. J. (1998). Soil fertility management in Southern Africa. In D. Byerlee & C. K. Eicher (Eds.), Africa’s emerging maize revolution (p. 305). Boulder, CO: Lynne Rienner Publishers.

    Google Scholar 

  • Kurukulasuriya, P., & Rosenthal, S. (2003). Climate change and agriculture: A review of impacts and adaptations, Climate Change Series, Paper 91. Washington, DC: The World Bank. Retrieved December 22, 2017, from http://documents.worldbank.org/curated/en/757601468332407727/pdf/787390WP0Clima0ure0377348B00PUBLIC0.pdf.

    Google Scholar 

  • Lambrou, Y., & Nelson, S. (2010). Farmers in a changing climate – Does gender matter? Food security in Andhra Pradesh, India. Rome: FAO. Retrieved December 22, 2017, from http://www.fao.org/docrep/013/i1721e/i1721e00.pdf.

    Google Scholar 

  • Lioubimtseva, L., Dronin, N., & Kirilenko, A. (2015). Grain production trends in the Russian Federation, Ukraine and Kazakhstan in the context of climate change and international trade. In A. Elbehri (Ed.), Climate change and food systems: Global assessments and implications for food security and trade (pp. 211–244). Rome: Food Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  • Lobell, D. B., Hammer, G. L., McLean, G., Messina, C., Roberts, M. J., & Schlenker, W. (2013). The critical role of extreme heat for maize production in the United States. Nature Climate Change, 3, 497–501.

    Article  Google Scholar 

  • Masih, I., Maskey, S., Mussá, F. E. F., & Trambauer, P. (2014). A review of droughts on the African continent: A geospatial and long-term perspective. Hydrology and Earth System Sciences, 18(9), 3635–3649.

    Article  Google Scholar 

  • Miles, L., Newton, A. C., DeFries, R. S., Ravilious, C., May, I., Blyth, S., et al. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3), 491–505.

    Article  Google Scholar 

  • Meridian Institute. (2017). Public intellectual property resource for agriculture. Retrieved December 22, 2017, from http://merid.org/Content/Projects/Public_Intellectual_Property_Resource_for_Agriculture.aspx.

  • Müller, C., & Elliott, J. (2015). The global gridded crop model intercomparison: Approaches, insights and caveats for modelling climate change impacts on agriculture at the global scale. In A. Elbehri (Ed.), Climate change and food systems: Global assessments and implications for food security and trade (pp. 28–59). Rome: Food Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  • Nelson, G. C., Rosegrant, M. W., Palazzo, A., Gray, I., Ingersoll, C., Robertson, R., et al. (2010). Food security, farming, and climate change to 2050: Scenarios, results, policy options. Washington, DC: International Food Policy Research Institute (IFPRI).

    Google Scholar 

  • Nelson, G. C., Valin, H., Sands, R. D., Havlik, P., Ahammad, H., Deryng, D., et al. (2014). Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3274–3279.

    Article  CAS  Google Scholar 

  • Nkonya, E., Mirzabaev, A., & Von Braun, J. (2015). Economics of land degradation and improvement: A global assessment for sustainable development. New York, NY: Springer.

    Google Scholar 

  • Nyasimi, M., Amwata, D., Hove, L., Kinyangi, J., & Wamukoya, G. (2014). Evidence of impact: Climate-smart agriculture in Africa. CCAFS Working Paper No. 86. Copenhagen: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).. Retrieved December 22, 2017, from https://ccafs.cgiar.org/sites/default/files/research/attachments/climate_smart_farming_successes_Africa.pdf.

    Google Scholar 

  • OECD. (2013). Policy instruments to support green growth in agriculture. OECD green growth studies. Paris: OECD. Retrieved February 06, 2018, from http://www.oecd.org/environment/policy-instruments-to-support-green-growth-in-agriculture-9789264203525-en.htm.

    Google Scholar 

  • OECD. (2015). Agriculture and climate change, trade and agriculture directorate. Paris: Organization of Economic Cooperation and Development. September. Retrieved February 06, 2018, from https://www.oecd.org/tad/sustainable-agriculture/agriculture-climate-change-september-2015.pdf.

    Google Scholar 

  • Pattnaik, I., Lahiri-Dutt, K., Lockie, S., & Pritchard, B. (2018). The feminization of agriculture or the feminization of agrarian distress? Tracking the trajectory of women in agriculture in India. Journal of the Asia Pacific Economy, 23, 138. https://doi.org/10.1080/13547860.2017.1394569.

    Article  Google Scholar 

  • Pautasso, M., Döring, T. F., Garbelotto, M., Pellis, L., & Jeger, M. J. (2012). Impacts of climate change on plant diseases – Opinions and trends. European Journal of Plant Pathology, 133(1), 295–313.

    Article  Google Scholar 

  • Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Climate change and distribution shifts in marine fishes. Science, 308(5730), 1912–1915.

    Article  CAS  Google Scholar 

  • PRB. (2013). World population data sheet 2013. Population reference bureau. . Retrieved December 22, 2017, from www.prb.org/Publications/Datasheets/2013/2013-world-population-data-sheet.aspx.

    Google Scholar 

  • Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., et al. (2014). Food security and food production systems. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, et al. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 485–533). Cambridge; New York, NY: Cambridge University Press. Retrieved December 22, 2017, from http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap7_FINAL.pdf.

    Google Scholar 

  • Pörtner, H. O. (2008). Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Marine Ecology Progress Series, 373, 203–217.

    Article  Google Scholar 

  • Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., et al. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3268–3273. https://doi.org/10.1073/pnas.1222463110.

    Article  CAS  Google Scholar 

  • Rosegrant, M. W., Ewing, M., Yohe, G., Burton, I., Huq, S., & Valmonte-Santos, R. (2008). Climate change and agriculture: Threats and opportunities. Bonn: Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH. Climate Protection Programme for Developing Countries.

    Google Scholar 

  • Recha, C. W., Makokha, G. L., Traore, P. S., Shisanya, C., Lodoun, T., & Sako, A. (2012). Determination of seasonal rainfall variability, onset and cessation in semi-arid Tharaka District, Kenya. Theoretical and Applied Climatology, 108, 479–494.

    Article  Google Scholar 

  • Sarkar, A., Patil, S., Hugar, L. B., & van Loon, G. (2011). Sustainability of current agriculture practices, community perception, and implications for ecosystem health: An Indian study. EcoHealth, 8(4), 418–431. https://doi.org/10.1007/s10393-011-0723-9.

    Article  Google Scholar 

  • Sarkar, A., & vanLoon, G. W. (2015). Modern agriculture and food and nutrition insecurity: Paradox in India. Public Health, 129(9), 1291–1293.

    Article  CAS  Google Scholar 

  • Settele, J., Scholes, R., Betts, R., Bunn, S., Leadley, P., Nepstad, D., et al. (2014). Terrestrial and inland water systems. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, et al. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 271–359). Cambridge; New York, NY: Cambridge University Press. Retrieved December 22, 2017, from https://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-Chap4_FINAL.pdf.

    Google Scholar 

  • Smit, B., & Skinner, M. W. (2002). Adaptation options in agriculture to climate change: A typology. Mitigation and Adaptation Strategies for Global Change, 7, 85–114.

    Article  Google Scholar 

  • Sanchez, P. (2002). Soil fertility and hunger in Africa. Science, 295, 2019–2020.

    Article  CAS  Google Scholar 

  • Shiferaw, B., Tesfaye, K., Kassie, M., Abate, T., Prasanna, B. M., & Menkir, A. (2014). Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather and Climate Extremes, 3, 67–79.

    Article  Google Scholar 

  • Thomas, T., & Rosegrant, M. (2015). Climate change impact on key crops in Africa: Using crop models and general equilibrium models to bound the predictions. In A. Elbehri (Ed.), Climate change and food systems: Global assessments and implications for food security and trade. Rome: FAO.

    Google Scholar 

  • Uleberg, E., Hanssen-Bauer, I., van Oort, B., & Dalmannsdottir, S. (2014). Impact of climate change on agriculture in Northern Norway and potential strategies for adaptation. Climatic Change, 122, 27–39.

    Article  Google Scholar 

  • UN. (2014). Goal 2. Sustainable development knowledge platform. United Nations. December 1. Retrieved December 22, 2017, from https://sustainabledevelopment.un.org/?page=view&nr=164&type=230 and https://sustainabledevelopment.un.org/sdg13.

  • van Loon, G. W., Patil, S. G., & Hugar, L. B. (2005). Agricultural sustainability—Strategies for assessment. New Delhi: Sage.

    Google Scholar 

  • Wassmann, R., Jagadish, S. V. K., Heuer, S., Ismail, A., Redoña, E., Serraj, R., et al. (2009). Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies. In L. Sparks Donald (Ed.), Advances in agronomy (Vol. 101, pp. 59–122). Burlington, MA: Academic Press.

    Google Scholar 

  • World Bank/FAO/WorldFish Center. (2010). The hidden harvests: The global contribution of capture fisheries. Agriculture and Rural Development Department, Sustainable Development Network. June. Washington, DC: World Bank. Retrieved December 22, 2017, from http://siteresources.worldbank.org/EXTARD/Resources/336681-1224775570533/TheHiddenHarvestsConferenceEdition.pdf.

    Google Scholar 

  • Wreford, A., Moran, D., & Adger, N. (2010). Climate change and agriculture: Impacts, adaptation and mitigation. Paris: OECD. Retrieved December 22, 2017, from https://www.cabdirect.org/cabdirect/abstract/20103233880.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanu Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, A., vanLoon, G.W., Watson, D. (2019). Introduction. In: Sarkar, A., Sensarma, S., vanLoon, G. (eds) Sustainable Solutions for Food Security . Springer, Cham. https://doi.org/10.1007/978-3-319-77878-5_1

Download citation

Publish with us

Policies and ethics