Skip to main content

Near-Surface Biogeochemistry and Phytoplankton Carbon Assimilation in the Rio de la Plata Estuary

  • Chapter
  • First Online:
Book cover Plankton Ecology of the Southwestern Atlantic

Abstract

The Rio de la Plata estuary (RPE) is considered a highly productive ecosystem, but knowledge of its functioning is sparse, particularly at basal trophic levels. Direct measurements of primary production are scarce, and the mechanisms that drive biological production and biogeochemistry of nutrients and other key compounds are largely unknown. This review summarizes the current information available in published literature in standard journals and other sources and explores driving mechanisms for photosynthetic carbon assimilation (PCA). A database was compiled which includes photosynthetic rates and ancillary environmental variables, i.e. salinity; chlorophyll a (as surrogate for phytoplankton biomass); dissolved inorganic macronutrients N, P and Si; suspended particulate matter (SPM); and underwater light environment. Information gathered covers an extended time period but clustered into an early (1980–1987) and a more recent one (1999–2009). Data was unequally distributed between both periods; for example, PCA data exist only for the most recent period. Data indicate prevalence of high photosynthetic rates in the RPE (mean of 29.25 ± 22.61 mg C m−3 h−1). The concentration of nutrients, SPM and indicators of underwater light regime covered wide ranges of variability with remarkable differences between both time periods. All these variables were strongly affected by salinity, showing either a decreasing pattern of concentration from freshwaters to marine waters (e.g. nutrients) or from marine waters to freshwaters (i.e. better light conditions in marine-influenced waters). These results were valid irrespective of the period and of the light environment indicator considered (Kd, turbidity). PCA was highest at intermediate surface salinities (10–20), decreasing both towards fresh and towards marine areas. Observed variability patterns of nutrients, SPM, light regime and carbon assimilation along the salinity gradient were consistent with mechanisms predicted by the theory developed for turbid estuaries, which propose that PCA is regulated by inverse horizontal gradients of light and nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu P, Odebrecht C, Gonzalez A (1994) Particulate and dissolved phytoplankton production of the Patos lagoon estuary, southern Brazil: comparison of methods and influencing factors. J Plankton Res 16:737–735

    Article  Google Scholar 

  • Acha EM, Mianzan H, Guerrero R et al (2008) An overview of physical and ecological processes in the Rio de la Plata estuary. Cont Shelf Res 28:1579–1588

    Article  Google Scholar 

  • Acha EM, Simionato C, Carozza C, Mianzan H (2012) Climate-induced year-class fluctuations of whitemouth croaker Micropogonias furnieri (Pisces, Sciaenidae) in the Río de la Plata estuary, Argentina–Uruguay. Fish Oceanogr 21:58–77

    Google Scholar 

  • Acuña A, Viana F (2001) Ciclo reproductivo y características ambientales del área de desove de la pescadilla de red (Macrodon ancylodon) y la pescadilla de calada (Cynoscion guatucupa) en la costa uruguaya. In: Vizziano D et al (eds) El Río de la Plata. Investigación para la Gestión del Ambiente, los Recursos Pesqueros y la Pesquería en el Frente Salino. Programa Ecoplata, Montevideo, Uruguay, pp 71–84

    Google Scholar 

  • Alpine A, Cloern J (1992) Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. Limnol Oceanogr 37:946–955

    Article  Google Scholar 

  • Alpine A, Cloern J (1988) Phytoplankton growth rates in a light limited environment, San Francisco Bay. Mar Ecol Prog Ser 44:167–173

    Article  Google Scholar 

  • Behrenfeld M, Falkowski P (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20

    Article  CAS  Google Scholar 

  • Bianchi T (2007) Biogeochemistry of estuaries. Oxford University Press, New York

    Google Scholar 

  • Burnham K, Anderson D (2002) Model selection and multimodel inference. A practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Caffrey J (2004) Factors controlling net ecosystem metabolism in U.S. estuaries. Estuaries 27:90–101

    Article  CAS  Google Scholar 

  • Calliari D, Gómez-Erache M, Gómez N (2005) Biomass and composition of the phytoplankton in the Río de la Plata: large-scale distribution and relationship with environmental variables during a spring cruise. Cont Shelf Res 25:197–210

    Article  Google Scholar 

  • Calliari D, Brugnolli E, Ferrari G et al (2009a) Phytoplankton distribution and production along a wide environmental gradient in the South-West Atlantic off Uruguay. Hydrobiol 620:47–61

    Article  CAS  Google Scholar 

  • Calliari D, Britos A, Conde D (2009b) Testing the relationship between primary production and Acartia tonsa grazing pressure in an estuarine lagoon. J Plankton Res 31:1045–1058

    Article  CAS  Google Scholar 

  • Carp (1989) Estudio para la evaluación de la contaminación en el Rio de la Plata. Informe de avance. SHN–SOHMA.

    Google Scholar 

  • Carreto J, Negri R, Benavides H (1986) Algunas caracteristicas del florecimiento del fitoplancton en el frente del Río de la Plata. I: los sistemas nutritivos. Rev Inv Des Pesq 5:7–29

    Google Scholar 

  • Cloern J (1987) Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont Shelf Res 7:1367–1381

    Article  Google Scholar 

  • Cloern J (1999) The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquat Ecol 33:3–15

    Article  Google Scholar 

  • Cloern J (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253

    Article  CAS  Google Scholar 

  • Cole B, Cloern J (1987) An empirical model for estimating phytoplankton productivity in estuaries. Mar Ecol Prog Ser 36:299–305

    Article  Google Scholar 

  • Conde D, Aubriot L, Sommaruga R (2000) Changes in UV penetration associated with marine intrusions and freshwater discharge in a shallow coastal lagoon of the Southern Atlantic Ocean. Mar Ecol Prog Ser 207:19–31

    Article  Google Scholar 

  • Day J, Kemp W, Yáñez-Arancibia A, Crump B (eds) (2013) Estuarine ecology, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Depetris P, Pasquini A (2008) Riverine flow and lake level variability in Southern South America. EOS Trans Am Geophys Union 89:254–255

    Article  Google Scholar 

  • Depetris P, Kempe S, Latif M et al (1996) ENSO-controlled flooding in the Paraná River (1904–1991). Naturwissenschaften 83:127–129

    Article  CAS  Google Scholar 

  • Derisio C, Braverman M, Gaitan E et al (2014) The turbidity front as a habitat for Acartia tonsa (Copepoda) in the Río de la Plata, Argentina-Uruguay. J Sea Res 85:197–204

    Article  Google Scholar 

  • Duarte C, Regaudie-de-Gioux A (2009) Thresholds of gross primary production for the metabolic balance of marine planktonic communities. Limnol Oceanogr 54:1015–1022

    Article  CAS  Google Scholar 

  • Duarte C, Agustí S, Vaqué D (2004) Controls on planktonic metabolism in the Bay of Blanes, northwestern Mediterranean littoral. Limnol Oceanogr 49:2162–2170

    Article  Google Scholar 

  • Falkowski P, Barber R, Smetacek V (1997) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

    Article  Google Scholar 

  • Ferrari G (2008) Caracterización de las masas de agua presentes en el Río de la Plata y su frente oceánico a través del fitoplancton, Tesis de Maestría, PEDECIBA – Biologia, Universidad de la República, Uruguay.

    Google Scholar 

  • Ferrari G, Pérez M d C (2002) Fitoplancton de la costa platense y atlántica del Uruguay (1993–1994). Iheringia Ser Bot 57:263–278

    Google Scholar 

  • Framiñan M, Brown O (1996) Study of the Río de la Plata turbidity front, part I: spatial and temporal distribution. Cont Shelf Res 16:1259–1282

    Article  Google Scholar 

  • Framiñan M et al (1999) Physical characteristics and processes of the Rio de la Plata estuary. In: Perillo G, Piccolo C, Pino-Quivira M (eds) Estuaries of South America: their geomorphology and dynamics. Springer, Berlin/New York, pp 161–194

    Chapter  Google Scholar 

  • Friedrichsmeier T, P Ecochard, Roediger S et al (2015) Interfaz gráfica para el lenguaje estadístico R. http://rkward.kde.org Licencia Publica General de GNU

  • del Giorgio P, Duarte C (2002) Respiration in the open ocean. Nature 420:379–384

    Article  CAS  PubMed  Google Scholar 

  • del Giorgio P, le B Williams P (eds) (2005) Respiration in aquatic ecosystems. Oxford University Press, Oxford, 315p

    Google Scholar 

  • Gómez N, Hualde PR, Licursi M et al (2004) Spring phytoplankton of Río de la Plata: a temperate estuary of South America. Est Coast Shelf Sci 61:301–309

    Article  CAS  Google Scholar 

  • Gómez-Erache M, Lagomarsino JJ, Nuñez K et al (2001) Producción fitoplanctónica en la región frontal del Río de la Plata. In: Vizziano D et al (eds.) El Río de la Plata. Investigación para la gestión del ambiente, los recursos pesqueros y la pesquería en el frente salino. Programa Ecoplata, pp 33–45

    Google Scholar 

  • Guerrero R, Acha M, Framiñan MB et al (1997) Physical oceanography of the Río de la Plata estuary. Cont Shelf Res 17:727–742

    Article  Google Scholar 

  • Huret M, Dadou I, Dumas F et al (2005) Coupling physical and biogeochemical processes in the Río de la Plata plume. Cont Shelf Res 25:629–653

    Article  Google Scholar 

  • Kocum E, Underwood G, Nedwell D (2002) Simultaneous measurement of phytoplanktonic primary production, nutrient and light availability along a turbid, eutrophic UK east coast estuary (the Colne estuary). Mar Ecol Prog Ser 231:1–12

    Article  Google Scholar 

  • Kruk C, Martinez A, Nogueira L et al (2014) Morphological traits variability reflects light limitation of phytoplankton production in a highly productive subtropical estuary (Río de la Plata, South America). Mar Biol. https://doi.org/10.1007/s00227-014-2568-6

  • Lercari D, Horta S, Martinez G et al (2014) A food web analysis of the Río de la Plata estuary and adjacent shelf ecosystem: trophic structure, biomass flows, and the role of fisheries. Hydrobiol. https://doi.org/10.1007/s10750-014-1964-8

  • Libes (2009) Introduction to marine biogeochemistry, 2nd edn. Academic, Burlington

    Google Scholar 

  • Lucas LV, Koseff JR, Cloern JE et al (1999) Processes governing phytoplankton blooms in estuaries. II: the role of horizontal transport. Mar Ecol Prog Ser 187:17–30

    Article  Google Scholar 

  • Mann K, Lazier J (2006) Dynamics of marine ecosystems: biological-physical interactions in the oceans, 3rd edn. Blackwell Science Publishing, Malden

    Google Scholar 

  • Martínez G, Brugnoli E, Hernández J et al (2005) How valid is the SeaWiFS estimation of chlorophyll-a at the Río de la Plata estuary and its area of influence?. In: Frouin R, Kawamura H, Pan D (eds) Active and Passive Remote Sensing of the Oceans. Proc of SPIE 5656. https://doi.org/10.1117/12.582665.

  • Masello A, Menafra R (1998) Comunidades macrobentónicas de la zona costera uruguaya y areas adyacentes. In: Wells P, Daborn G (eds). El Río de la Plata. Una Revisión Ambiental. Un informe de Antecedentes del Proyecto EcoPlata. Dalhousie University, Halifax, Nova Scotia, Canada, pp 142–193.

    Google Scholar 

  • May C, Koseff JR, Lucas LV et al (2003) Effects of spatial and temporal variability of turbidity on phytoplankton blooms. Mar Ecol Prog Ser 254:111–128

    Article  CAS  Google Scholar 

  • Mechoso C, Pérez-Iribarren G (1992) Streamflow in Southeastern South America and the Southern Oscillation. J Clim 5:1535–1539

    Article  Google Scholar 

  • Montes-Hugo MA, Alvarez-Borrego S, Gaxiola-Castro G (2004) Annual phytoplankton production in a coastal lagoon of the southern California Current System. Mar Ecol Prog Ser 277:51–60

    Article  Google Scholar 

  • Nagy G, López-Laborde J, Anastasía L (1987) Caracterización de ambientes en el Río de la Plata Exterior (salinidad y turbiedad óptica). Inv Oceanológicas 1:31–56

    Google Scholar 

  • Nagy G, Martínez CM, Caffera RM, et al (1998) Marco hidrológico y climático del Río de la Plata. In: Wells P, Daborn G (eds). El Río de la Plata. Una Revisión Ambiental. Un informe de Antecedentes del Proyecto EcoPlata. Dalhousie University, Halifax, Nova Scotia, Canada, p 17–70

    Google Scholar 

  • Nagy G, Gómez-Erache M, López CH, Perdomo AC (2002) Distribution patterns of nutrients and symptoms of eutrophication in the Rio de la Plata River Estuary System. Hydrobiol 475/476:125–139

    Article  CAS  Google Scholar 

  • Nienchesky L, Baumgarten M (1997) Environment and biota of the Patos Lagoon estuary: environmental chemistry. In: Seeliger U, Odebrecht C, Castello J (eds) Subtropical convergence environments. the coast and sea in the Southwestern Atlantic. Springer, Berlin, pp 20–23

    Google Scholar 

  • Pasquini A, Lecomte KL, Piovano EL et al (2006) Recent rainfall and runoff variability in Central Argentina. Quaternary Internacional 158:127–139

    Google Scholar 

  • Piola A, Matano RP, Palma E et al (2005) The influence of the Plata River discharge on the western South Atlantic shelf. Geophys Res Lett 32:1–4

    Article  Google Scholar 

  • Piola A, Romero S, Zajaczkovski U (2008) Space-time variability of the Plata plume inferred from ocean color. Cont Shelf Res 28:1556–1567

    Article  Google Scholar 

  • R Core team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, https://www.R-project.org. Accessed 3 July 2017.

  • Rodriguez-Graña L (2010) Retinal development in flatfish larvae: the effect of dietary essential fatty acids. Final activity and management report. Marie Curie Mobility Actions – EU, 8pp

    Google Scholar 

  • Sharp J, Pennock JR, Church TM et al (1984) The estuarine interaction of nutrients, organics, and metals: a case study in the Delaware Estuary. In: Kennedy V (ed) The estuary as a filter. Academic, San Diego, pp 241–258

    Chapter  Google Scholar 

  • Valiela I (2015) Marine ecological processes. Springer, New York

    Book  Google Scholar 

  • Vizziano D (2001) Determinación del ciclo reproductivo de la corvina Micropogonias furnieri (Pisces: Scianidae) y los factores que inciden en su estacionalidad en la zona frontal del Río de la Plata. In: Vizziano D et al (eds.) El Río de la Plata. Investigación para la gestión del ambiente, los recursos pesqueros y la pesquería en el frente salino. Programa Ecoplata, pp 105–114.

    Google Scholar 

  • Westberry T, Behrenfeld MJ, Siegel DA, Boss E (2008) Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem Cycles. https://doi.org/10.1029/2007GB003078

Download references

Acknowledgements

Results presented in this paper were obtained during research programs and projects funded by diverse agencies: ECOPLATA program (IDRC-Canadá, UNESCO-PNUD, Ministry of Housing and Environment of Uruguay), FREPLATA program (UNDP-GEF, Argentina-Uruguay), Comisión Administradora del Río de la Plata (Argentina-Uruguay), FEMCIDI-OAS and Max Planck Partner Group projects. Data provided by INIDEP (Argentina) were produced by Dr. Constanza Hozbor (SPM, Laboratory of Molecular Biology and Microbiology) and Dr. José I. Carreto (chlorophyll a, Program for the Marine Environment and Red Tides) and are deeply acknowledged. Dr. Carla Derisio helped with making INIDEP data accessible for the present paper and contributed with discussions of SPM and chlorophyll data distribution. Comments by reviewers and editors – particularly Dr. F. P. Brandini – contributed to improve this paper and are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo L. Calliari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calliari, D.L., Gómez-Erache, M., Cantonnet, D.V., Alonso, C. (2018). Near-Surface Biogeochemistry and Phytoplankton Carbon Assimilation in the Rio de la Plata Estuary. In: Hoffmeyer, M., Sabatini, M., Brandini, F., Calliari, D., Santinelli, N. (eds) Plankton Ecology of the Southwestern Atlantic. Springer, Cham. https://doi.org/10.1007/978-3-319-77869-3_14

Download citation

Publish with us

Policies and ethics