Skip to main content

Commentary on and Corrections to the First Four Volumes

  • Chapter
  • First Online:
Ramanujan's Lost Notebook

Abstract

An excellent survey article on the Rogers–Ramanujan continued fraction, especially from the viewpoint of modular forms, has been written by W. Duke [128].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.M. Aldawoud, Ramanujan-type series for 1∕π with quadratic irrationals, Master of Science Thesis, Massey University, New Zealand, 2012.

    Google Scholar 

  2. G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook, Part I, Springer, New York, 2005.

    MATH  Google Scholar 

  3. G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook, Part II, Springer, New York, 2009.

    Google Scholar 

  4. G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook, Part III, Springer, New York, 2012.

    Google Scholar 

  5. G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook, Part IV, Springer, New York, 2013.

    Google Scholar 

  6. A. Aycock, On proving some of Ramanujan’s formulas for 1∕π with an elementary method, preprint.

    Google Scholar 

  7. W.N. Bailey, Some classes of functions which are their own reciprocals in the Fourier-Bessel integral transform, J. London Math. Soc. 1 (1930), 258–265.

    Google Scholar 

  8. N.D. Baruah and B.C. Berndt, Ramanujan’s Eisenstein Series and new hypergeometric-like series for 1∕π 2, J. Aprox. Thy. 160 (2009), 135–153.

    Google Scholar 

  9. N.D. Baruah and B.C. Berndt, Eisenstein series and Ramanujan-type series for 1∕π, Ramanujan J. 23 (2010), 17–44.

    Article  MathSciNet  Google Scholar 

  10. N.D. Baruah, B.C. Berndt, and H.H. Chan, Ramanujan’s series for 1∕π: A survey, Math. Student (Special Centenary Volume 2007), 1–24; Amer. Math. Monthly 116 (2009), 567–587.

    Google Scholar 

  11. A. Berkovich, H.H. Chan, and M.J. Schlosser, Wronskians of theta functions and series for 1∕π, submitted.

    Google Scholar 

  12. B.C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.

    Google Scholar 

  13. B.C. Berndt, Ramanujan’s Notebooks, Part V, Springer-Verlag, New York, 1998.

    Book  Google Scholar 

  14. B.C. Berndt, A. Dixit, A. Roy, and A. Zaharescu, New pathways and connections in number theory and analysis motivated by two incorrect claims of Ramanujan, Adv. Math. 304 (2017), 809–929.

    Google Scholar 

  15. B.C. Berndt, S. Kim, and A. Zaharescu, The circle problem of Gauss and the divisor problem of Dirichlet–still unsolved, Amer. Math. Monthly 125 (2018), 99–114.

    Google Scholar 

  16. B.C. Berndt and A. Straub, Ramanujan’s formula for ζ(2n + 1), in Exploring the Riemann Zeta Function, H. Montgomery, A. Nikeghbali, and M. Rassias, editors, Springer, 2017, pp. 13–34.

    Google Scholar 

  17. H.H. Chan, Triple product identity, quintuple product identity and Ramanujan’s differential equations for the classical Eisenstein series, Proc. Amer. Math. Soc. 135 (2007), 1987–1992.

    Google Scholar 

  18. H.H. Chan, S.H. Chan, and Z.-G. Liu, Domb’s numbers and Ramanujan–Sato type series for 1∕π, Adv. Math. 186 (2004), 396–410.

    Google Scholar 

  19. H.H. Chan and S. Cooper, Rational analogues of Ramanujan’s series for 1∕π, Math. Proc. Cambridge Philos. Soc. 153 (2012), 361–383.

    Google Scholar 

  20. H.H. Chan, Y. Tanigawa, Y. Yang, and W. Zudilin, New analogues of Clausen’s identities arising from the theory of modular forms, Adv. Math. 228 (2011), 1294–1314.

    Google Scholar 

  21. H.H. Chan, J.G. Wan, and W. Zudilin, Legendre polynomials and Ramanujan-type series for 1∕π, Israel J. Math. 194 (2013), 183–207.

    Google Scholar 

  22. H.H. Chan and W. Zudilin, New representations for Apéry-like sequences, Mathematika 56 (2010), 107–117.

    Article  MathSciNet  Google Scholar 

  23. K. Chandrasekharan and R. Narasimhan, Hecke’s functional equation and arithmetical identities, Ann. Math. (2) 74 (1961), 1–23.

    Google Scholar 

  24. C.-P. Chen, A sharp version of Ramanujan’s inequality for the factorial function, Ramanujan J. 39 (2016), 149–154.

    Article  MathSciNet  Google Scholar 

  25. I.C. Chen and G. Glebov, On Chudnovsky–Ramanujan type formulae, Ramanujan J., to appear.

    Google Scholar 

  26. S. Cooper, On Ramanujan’s function k(q) = r(q)r 2 (q 2 ), Ramanujan J. 20 (2009), 311–328.

    Article  MathSciNet  Google Scholar 

  27. S. Cooper, Sporadic sequences, modular forms and new series for 1∕π, Ramanujan J. 29 (2012), 163–183.

    Article  MathSciNet  Google Scholar 

  28. S. Cooper, Level 10 analogues of Ramanujan’s series for 1∕π, J. Ramanujan Math. Soc. 27 (2012), 59–76.

    Google Scholar 

  29. S. Cooper, Ramanujan’s Theta Functions, Springer, New York, 2017.

    Book  Google Scholar 

  30. S. Cooper, J. Ge, and D. Ye, Hypergeometric transformation formulas of degrees 3,7,11 and 23, J. Math. Anal. Applics. 421 (2015), 1358–1376.

    Google Scholar 

  31. S. Cooper and M. D. Hirschhorn, Factorizations that involve Ramanujan’s function k(q) = r(q)r 2 (q 2 ), Acta Math. Sinica, English Series, 27 (2011), 2301–2308.

    Google Scholar 

  32. S. Cooper and D. Ye, Level 14 and 15 analogues of Ramanujan’s elliptic functions to alternative bases, Trans. Amer. Math. Soc. 368 (2016), 7883–7910.

    Google Scholar 

  33. S. Cooper and W. Zudilin, Hypergeometric modular equations, arXiv:1609.07276v1.

    Google Scholar 

  34. A. Dixit, R. Gupta, R. Kumar, and B. Maji, Generalized Lambert series, Raabe’s integral and a two-parameter generalization of Ramanujan’s formula for ζ(2m + 1), submitted.

    Google Scholar 

  35. A. Dixit and B. Maji, Generalized Lambert series and arithmetic nature of odd zeta values, submitted.

    Google Scholar 

  36. W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. (N.S.), 42 (2005), 137–162.

    Google Scholar 

  37. J. Guillera, On WZ-pairs which prove Ramanujan’s series, Ramanujan J. 22 (2010), 249–259.

    Article  MathSciNet  Google Scholar 

  38. J. Guillera, A matrix form of Ramanujan-type series for 1∕π 2, in Gems in Experimental Mathematics, T. Amdeberhan, L.A. Medina, and V.H. Moll, eds., Contemp. Math. 517, Amer. Math. Soc., Providence, RI, 2010, 189–206.

    Google Scholar 

  39. J. Guillera, WZ-proofs of “divergent” Ramanujan-type series, in Advances in Combinatorics, Springer, New York, 2013, pp. 187–195.

    Google Scholar 

  40. J. Guillera, A new Ramanujan-like series for 1∕π 2, Ramanujan J. 26 (2011), 369–374.

    Article  MathSciNet  Google Scholar 

  41. J. Guillera and W. Zudilin, Ramanujan–type formulae for 1∕π: The art of translation, in The Legacy of Srinivasa Ramanujan, B.C. Berndt and D. Prasad, eds., Ramanujan Math. Soc., Mysore, 2013, pp. 181–195.

    Google Scholar 

  42. M.D. Hirschhorn, Elementary analysis in Ramanujan’s lost notebook, Ramanujan J. 37 (2015), 641–651.

    Article  MathSciNet  Google Scholar 

  43. M.D. Hirschhorn, The Power of q, Develop. Math., Vol. 49, Springer, New York, 2017.

    Google Scholar 

  44. M.D. Hirschhorn and M.B. Villarino, A refinement of Ramanujan’s factorial approximation, Ramanujan J. 34 (2014), 73–81.

    Article  MathSciNet  Google Scholar 

  45. T. Huber, D. Schultz, and D. Ye, Series for 1∕π of signature 20, J. Number Thy. 188 2018, 121–136.

    Google Scholar 

  46. T. Huber, D. Schultz, and D. Ye, Level 17 Ramanujan-Sato series, submitted.

    Google Scholar 

  47. C.G.J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Sumptibus, Fratrum Bornträger, Regiomonti, 1829.

    Google Scholar 

  48. S. Kanemitsu, Y. Tanigawa, and M. Yoshimoto, On the values of the Riemann zeta-function at rational arguments, Hardy–Ramanujan J. 24 (2001), 10–18.

    MathSciNet  MATH  Google Scholar 

  49. S. Krantz and H. Parks, The Implicit Function Theorem, Birkhauser, Boston, 2002.

    MATH  Google Scholar 

  50. S. Ramanujan, Modular equations and approximations to π, Quart. J. Math. 45 (1914), 350–372.

    Google Scholar 

  51. S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.

    Google Scholar 

  52. S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.

    Google Scholar 

  53. M. Rogers and A. Straub, A solution of Sun’s $520 challenge concerning 520∕π, Internat. J. Number Thy. 9 (2013), 1273–1288.

    Google Scholar 

  54. Z.-W. Sun, On sums related to central binomial and trinomial coefficients, in Combinatorial and Additive Number Theory: CANT 2011 and 2012, M.B. Nathanson, ed., Springer, New York, 2014, pp. 257–312.

    Google Scholar 

  55. Z.-W. Sun, Some new series for 1∕π and related congruences, Nanjing Univ. J. Math. 131 (2014), 150–164.

    Google Scholar 

  56. Z.-W. Sun, New series for some special values of L-functions, Nanjing Univ. J. Math. 32 (2015), 189–218.

    Google Scholar 

  57. K. Venkatachaliengar, Development of Elliptic Functions according to Ramanujan, Department of Mathematics, Madurai Kamaraj University, Technical Report 2, 1988, edited and revised by S. Cooper, World Scientific, Singapore, 2012.

    Google Scholar 

  58. M.B. Villarino, D. Campos-Salas, and J. Carvajal-Rojas, On the monotonicity of the correction term in Ramanujan’s factorial approximation, Math. Gaz. 97 (2013), 274–275.

    Google Scholar 

  59. J.G. Wan, Random Walks, Elliptic Integrals and Related Constants, Ph.D. Thesis, The University of Newcastle, Australia, 2013.

    Google Scholar 

  60. J.G. Wan, Series for 1∕π using Legendre’s relation, Integr. Transf. Spec. Funct. 25 (2014), 1–14.

    Google Scholar 

  61. J.G. Wan and W. Zudilin, Generating functions of Legendre polynomials: a tribute to Fred Brafman, J. Approx. Thy. 164 (2012), 488–503.

    Google Scholar 

  62. S. Wigert, Sur une extension de la série de Lambert, Arkiv Mat. Astron. Fys. 19 (1925), 13 pp.

    Google Scholar 

  63. D. Ye, Level 13 modular forms and their applications, B.S. Honours Report, Massey University, New Zealand, 2013.

    Google Scholar 

  64. W. Zudilin, Lost in translation, in Advances in Combinatorics, Springer, New York, 2013, 287–293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrews, G.E., Berndt, B.C. (2018). Commentary on and Corrections to the First Four Volumes. In: Ramanujan's Lost Notebook. Springer, Cham. https://doi.org/10.1007/978-3-319-77834-1_18

Download citation

Publish with us

Policies and ethics