Skip to main content

Novel Imaging Techniques in Cardiac Ion Channel Research

  • Chapter
  • First Online:
Channelopathies in Heart Disease

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 6))

  • 775 Accesses

Abstract

Light microscopy has long been at the forefront of biological research, perhaps most significantly in the form of fluorescence microscopy. This technique, paired with the ongoing discovery and synthesis of increasingly brilliant fluorophores, allows for visualization of the internal machinations of cells with molecular specificity. However, until recently, a persistent limitation of fluorescence microscopy—the diffraction of visible light—has restricted elucidation of the subcellular organization and localization of molecules to spatial resolutions of 200–300 nanometers. The invention and implementation of several super-resolution fluorescence microscopies (SRFMs) over the last 10 years have circumvented this diffraction limit and allowed up to tenfold improvements in resolution. Applications of SRFM in cardiology research have already illuminated aspects of the cardiac nanoscale architecture which were previously unobservable, opening the door for new avenues of research. These discoveries include the sub-diffraction structure of the intercalated disk, the t-tubular network, and excitation-contraction coupling. In this chapter we will review SRFM methodologies, present some examples of their successful application in cardiac research, and discuss the techniques’ advantages, ongoing challenges, and future potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agullo-Pascual E, Reid DA, Keegan S, Sidhu M, Fenyö D, Rothenberg E, et al. Super-resolution fluorescence microscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque. Cardiovasc Res. 2013;100:231–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agullo-Pascual E, Lin X, Leo-Macias A, Zhang M, Liang FX, Li Z, et al. Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. Cardiovasc Res. 2014;104:371–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andronov L, Lutz Y, Vonesch JL, Klaholz BP. SharpViSu: integrated analysis and segmentation of super-resolution microscopy data. Bioinformatics. 2016;32:2239–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, Soeller C. Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci U S A. 2009;106:22275–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–5.

    CAS  PubMed  Google Scholar 

  • Caetano FA, Dirk BS, Tam JH, Cavanagh PC, Goiko M, Ferguson SS, et al. MIiSR: molecular interactions in super-resolution imaging enables the analysis of protein interactions, dynamics and formation of multi-protein structures. PLoS Comput Biol. 2015;11:e1004634.

    PubMed  PubMed Central  Google Scholar 

  • Case LB, Baird MA, Shtengel G, Campbell SL, Hess HF, Davidson MW, et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat Cell Biol. 2015;17:880–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerrone M, Lin X, Zhang M, Agullo-Pascual E, Pfenniger A, Chkourko Gusky H, et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation 2014;129:1092–1103.

    CAS  PubMed  Google Scholar 

  • Chang H, Zhang M, Ji W, Chen J, Zhang Y, Liu B, et al. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci U S A. 2012;109:4455–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dani A, Huang B, Bergan J, Dulac C, Zhuang X. Superresolution imaging of chemical synapses in the brain. Neuron. 2010;68:843–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De La Fuente S, Fernandez-Sanz C, Vail C, Agra EJ, Holmstrom K, Sun J, et al. Strategic positioning and biased activity of the mitochondrial calcium Uniporter in cardiac muscle. J Biol Chem. 2016;291:23343–62.

    Google Scholar 

  • Franke C, Sauer M, van de Linde S. Photometry unlocks 3D information from 2D localization microscopy data. Nat Methods. 2017;14:41–4.

    CAS  PubMed  Google Scholar 

  • Granzier HL, Hutchinson KR, Tonino P, Methawasin M, Li FW, Slater RE, et al. Deleting titin’s I-band/A-band junction reveals critical roles for titin in biomechanical sensing and cardiac function. Proc Natl Acad Sci U S A. 2014;111:14589–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl. 2008;47:6172–6.

    CAS  PubMed  Google Scholar 

  • Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19:780–2.

    CAS  PubMed  Google Scholar 

  • Hennig S, van de Linde S, Lummer M, Simonis M, Huser T, Sauer M. Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. Nano Lett. 2015;15:1374–81.

    CAS  PubMed  Google Scholar 

  • Hess ST, Girirajan TP, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006;91:4258–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holm T, Klein T, Loschberger A, Klamp T, Wiebusch G, van de Linde S, et al. A blueprint for cost-efficient localization microscopy. Chemphyschem. 2014;15:651–4.

    CAS  PubMed  Google Scholar 

  • Hou Y, Jayasinghe I, Crossman DJ, Baddeley D, Soeller C. Nanoscale analysis of ryanodine receptor clusters in dyadic couplings of rat cardiac myocytes. J Mol Cell Cardiol. 2015;80:45–55.

    CAS  PubMed  Google Scholar 

  • Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008;319:810–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu Rev Biochem. 2009;78:993–1016.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasinghe ID, Baddeley D, Kong CH, Wehrens XH, Cannell MB, Soeller C. Nanoscale organization of junctophilin-2 and ryanodine receptors within peripheral couplings of rat ventricular cardiomyocytes. Biophys J. 2012;102:L19–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson E, Seiradake E, Jones EY, Davis I, Grunewald K, Kaufmann R. Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins. Sci Rep. 2015;5:9583.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, et al. Nanoscale architecture of integrin-based cell adhesions. Nature. 2010;468:580–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kube S, Hersch N, Naumovska E, Gensch T, Hendriks J, Franzen A, et al. Fusogenic liposomes as nanocarriers for the delivery of intracellular proteins. Langmuir. 2017;33(4):1051–9.

    CAS  PubMed  Google Scholar 

  • Langhorst MF, Schaffer J, Goetze B. Structure brings clarity: structured illumination microscopy in cell biology. Biotechnol J. 2009;4:858–65.

    CAS  PubMed  Google Scholar 

  • Leo-Macias A, Agullo-Pascual E, Sanchez-Alonso JL, Keegan S, Lin X, Arcos T, et al. Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc. Nat Commun. 2016;7:10342.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loschberger A, Franke C, Krohne G, van de Linde S, Sauer M. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J Cell Sci. 2014;127:4351–5.

    PubMed  Google Scholar 

  • Lukyanenko YO, Younes A, Lyashkov AE, Tarasov KV, Riordon DR, Lee J, et al. Ca(2+)/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function. J Mol Cell Cardiol. 2016;98:73–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macquaide N, Tuan HT, Hotta J, Sempels W, Lenaerts I, Holemans P, et al. Ryanodine receptor cluster fragmentation and redistribution in persistent atrial fibrillation enhance calcium release. Cardiovasc Res. 2015;108:387–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malkusch S, Heilemann M. Extracting quantitative information from single-molecule super-resolution imaging data with LAMA—LocAlization microscopy Analyzer. Sci Rep. 2016;6:34486.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munro ML, Jayasinghe ID, Wang Q, Quick A, Wang W, Baddeley D, et al. Junctophilin-2 in the nanoscale organisation and functional signalling of ryanodine receptor clusters in cardiomyocytes. J Cell Sci. 2016;129:4388–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paez-Segala MG, Sun MG, Shtengel G, Viswanathan S, Baird MA, Macklin JJ, et al. Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat Methods 2015;12:215–218, 214 p following 218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proppert S, Wolter S, Holm T, Klein T, van de Linde S, Sauer M. Cubic B-spline calibration for 3D super-resolution measurements using astigmatic imaging. Opt Express. 2014;22:10304–16.

    PubMed  Google Scholar 

  • Reid DA, Rothenberg E (2015) Single-molecule fluorescence imaging techniques. In: Encyclopedia of analytical chemistry, pp 1–20.

    Google Scholar 

  • Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3:793–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sage D, Kirshner H, Pengo T, Stuurman N, Min J, Manley S, et al. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat Methods. 2015;12:717–24.

    CAS  PubMed  Google Scholar 

  • Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A. 2009;106:3125–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szymborska A, de Marco A, Daigle N, Cordes VC, Briggs JA, Ellenberg J. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science. 2013;341:655–8.

    CAS  PubMed  Google Scholar 

  • Tang AH, Chen H, Li TP, Metzbower SR, MacGillavry HD, Blanpied TA. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature. 2016;536:210–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Te Riele AS, Agullo-Pascual E, James CA, Leo-Macias A, Cerrone M, Zhang M, et al. Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovasc Res. 2017;113:102–11.

    Google Scholar 

  • Teng KW, Ishitsuka Y, Ren P, Youn Y, Deng X, Ge P, et al. Labeling proteins inside living cells using external fluorophores for microscopy. elife. 2016;5

    Google Scholar 

  • Veeraraghavan R, Lin J, Hoeker GS, Keener JP, Gourdie RG, Poelzing S. Sodium channels in the Cx43 gap junction perinexus may constitute a cardiac ephapse: an experimental and modeling study. Pflugers Archiv Eur J Physiol. 2015;467:2093–105.

    CAS  Google Scholar 

  • Veeraraghavan R, Lin J, Keener JP, Gourdie R, Poelzing S. Potassium channels in the Cx43 gap junction perinexus modulate ephaptic coupling: an experimental and modeling study. Pflugers Archiv Eur J Physiol. 2016;468:1651–61.

    CAS  Google Scholar 

  • Wagner E, Lauterbach MA, Kohl T, Westphal V, Williams GS, Steinbrecher JH, et al. Stimulated emission depletion live-cell super-resolution imaging shows proliferative remodeling of T-tubule membrane structures after myocardial infarction. Circ Res. 2012;111:402–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Landstrom AP, Wang Q, Munro ML, Beavers D, Ackerman MJ, et al. Reduced junctional Na+/Ca2+-exchanger activity contributes to sarcoplasmic reticulum Ca2+ leak in junctophilin-2-deficient mice. Am J Phys Heart Circ Phys. 2014;307:H1317–26.

    CAS  Google Scholar 

  • Whelan DR, Bell TD. Super-resolution single-molecule localization microscopy: tricks of the trade. J Phys Chem Lett. 2015;6:374–82.

    CAS  PubMed  Google Scholar 

  • Wilhelm BG, Mandad S, Truckenbrodt S, Krohnert K, Schafer C, Rammner B, et al. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science. 2014;344:1023–8.

    CAS  PubMed  Google Scholar 

  • Wong J, Baddeley D, Bushong EA, Yu Z, Ellisman MH, Hoshijima M, et al. Nanoscale distribution of ryanodine receptors and caveolin-3 in mouse ventricular myocytes: dilation of T-tubules near junctions. Biophys J. 2013;104:L22–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science. 2013;339:452–6.

    CAS  PubMed  Google Scholar 

  • Yin Y, Rothenberg E. Probing the spatial organization of molecular complexes using triple-pair-correlation. Sci Rep. 2016;6:30819.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Nishimura Y, Kanchanawong P. Extracting microtubule networks from superresolution single-molecule localization microscopy data. Mol Biol Cell. 2017;28:333–45.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the help and critical discussions with members of the Rothenberg and Delmar labs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Rothenberg .

Editor information

Editors and Affiliations

Ethics declarations

Sources of Funding

Work in the Rothenberg lab is funded by the NIH grants R01-GM057691 and R21-CA187612 and the American Cancer Society grant (ACS 130304-RSG-16-241-01-DMC). Research in the Delmar lab is supported by NIH grants RO1-GM57691, RO1-HL134328, and RO1-HL136179.

Conflict of Interest

Authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agullo-Pascual, E., Leo-Macias, A., Whelan, D.R., Delmar, M., Rothenberg, E. (2018). Novel Imaging Techniques in Cardiac Ion Channel Research. In: Thomas, D., Remme, C. (eds) Channelopathies in Heart Disease . Cardiac and Vascular Biology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-77812-9_14

Download citation

Publish with us

Policies and ethics