Mechanisms Accounting for Interannual Variability of Advective Heat Transport in the North Atlantic Upper Layer

Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

The article describes physical mechanisms accounting for interannual variability of horizontal heat advection in the upper mixed layer (UML) in the North Atlantic in January and July. The data from ocean reanalyses ORA-S3, GFDL and GODAS over 1980–2011 are used for this analysis. The relative contribution of currents’ intensity, horizontal temperature gradients and their mutual influence into interannual variations of the advective heat transport in the UML is examined. In the most part of the North Atlantic basin, the variations of currents’ intensity are crucial factor accounting for the UML anomalies. The interannual heat advection anomalies in the Guiana current and the Gulf Stream vicinity (before veering off the continental slope) in January and July are caused by temperature gradients variations. In general, the influence of horizontal temperature gradient anomalies transported by abnormal currents in the North Atlantic is small.

Keywords

Horizontal heat advection Temperature gradient Current velocity Upper mixed layer North Atlantic 

Notes

Acknowledgements

This work was partially supported by research project No. 15-05-02019 of the Russian Foundation for Basic Research (RFBR).

References

  1. 1.
    Levitus, S., Antonov, J.I., Boyer, T.P., Baranova, O.K., Garcia, H.E., Locarnini, R.A., Mishonov, A.V., Reagan, J.R., Seidov, D., Yarosh, E.S., Zweng, M.M.: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39(10), L10603 (2012). https://doi.org/10.1029/2012GL051106 ADSCrossRefGoogle Scholar
  2. 2.
    Polonsky, A.B.: Oceans, Global Warming Hiatus and Regional Climate Variability. Lambert Academic Publishing, Saarbrucken, 192 p. (2015)Google Scholar
  3. 3.
    Dong, B., Sutton, R.T.: Variability in North Atlantic heat content and heat transport in a coupled ocean-atmosphere GCM. Clim. Dyn. 19(5), 485–497 (2002)Google Scholar
  4. 4.
    Hansen, D.V., Bezdek, H.F.: On the nature of decadal anomalies in North Atlantic sea surface temperature. J. Geophys. Res. 101(C4), 8749–8758 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Sutton, R.T., Allen, M.R.: Decadal predictability of North Atlantic sea surface temperature and climate. Nature 388(6642), 563–567 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Chepurin, G.A., Carton, J.A.: Subarctic and Arctic sea surface temperature and its relation to ocean heat content 1982–2010. J. Geophys. Res. 117(C6), C06019 (2012). https://doi.org/10.1029/2011JC007770 ADSCrossRefGoogle Scholar
  7. 7.
    Hakkinen, S.: Decadal air–sea interaction in the North Atlantic based on observations and modeling results. J. Clim. 13(6), 1195–1219 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Dong, S., Kelly, K.A.: Heat budget in the Gulf Stream region: the importance of heat storage and advection. J. Phys. Oceanogr. 34(5), 1214–1231 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Foukal, N.P., Lozier, M.S.: No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic. Nat. Commun. 7, 11333 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Polonsky, A.B., Kuzmin, A.S.: Decadal variability of hydrometeorological elements in the North Atlantic. Russ. Meteorol. Hydrol. 9, 51–63 (2000)Google Scholar
  11. 11.
    Polonsky, A.B.: Interdecadal variability in the ocean-atmosphere system. Russ. Meteorol. Hydrol. 5, 37–44 (1998)Google Scholar
  12. 12.
    Bagno, A.V., Dianskii, N.A., Moshonkin, S.N.: Interaction of the ocean surface temperature anomalies with the circulation in the North Atlantic. Oceanology 36(5), 652–661 (1996)Google Scholar
  13. 13.
    Panin, G.N., Diansky, N.A.: Climatic variations in the Arctic, North Atlantic, and the Northern Sea Route. Dokl. Earth Sci. 462(1), 505–509 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Balmaseda, M.A., Vidard, A., Anderson, D.L.T.: The ECMWF ocean analysis system: ORA-S3. Mon. Wea. Rev. 136(8), 3018–3034 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Chang, Y.-S., Zhang, S., Rosati, A., Delworth, T.L., Stern, W.F.: An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Clim. Dyn. 40(3–4), 775–803 (2013)CrossRefGoogle Scholar
  16. 16.
    Behringer, D.W., Xue, Y.: Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In: Proceedings of the Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, pp. 11–15. American Meteorological Society (2004)Google Scholar
  17. 17.
    Pacanowski, R.C., Philander, S.G.H.: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr. 11(11), 1443–1451 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    Sukhovey, V.F., Camara, T.: Thermal advection in the tropical Atlantic upper layer. Phys. Oceanogr. 6(6), 399–410 (1995)CrossRefGoogle Scholar
  19. 19.
    Piecuch, C.G., Ponte, R.M., Little, C.M., Buckley, M.W., Fukumori, I.: Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content. J. Geophys. Res. Oceans 122, 7181–7197 (2017).  https://doi.org/10.1002/2017jc012845 ADSCrossRefGoogle Scholar
  20. 20.
    Alekseev, G.V., Glok, N.I., Smirnov, A.V., Vyazilova, A.E.: The influence of the North Atlantic on climate variations in the Barents Sea and their predictability. Russ. Meteorol. Hydrol. 41(8), 544–558 (2016)CrossRefGoogle Scholar
  21. 21.
    Polonsky, A.B., Sukhonos, P.A.: Interannual variations in the components of heat budget in the upper layer of the North Atlantic in different seasons. Izv. Atmos. Oceanic Phys. 53(4), 459–466 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Natural and Technical SystemsSevastopolRussia

Personalised recommendations