Influence of Baroclinicity on Sea Level Oscillations in the Baltic Sea

  • Evgeny Zakharchuk
  • Natalia Tikhonova
  • Anatoly Gusev
  • Nikolay Diansky
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

On the basis of numerical experiments with the ocean model INMOM adapted for the Baltic Sea conditions, the influence of baroclinic processes on sea level oscillations is investigated. It is shown that baroclinic perturbations make a significant contribution to the total Baltic Sea level oscillations. Baroclinic effects have the dominate impact on formation of the mean sea level. The spectral analysis testifies the most considerable contribution of baroclinic fluctuations in the ranges of seasonal and mesoscale variability. The highest amplitudes of sea level baroclinic perturbations are noted in eastern part of the Gulf of Finland where they reach +30 cm, as well as in Bay of Bothnia and Gulf of Riga (+20 ÷ 25 cm). The greatest intensity of the baroclinic sea level oscillations is noted during the autumn and winter period in the local regions of open Baltic, the Bay of Bothnia, eastern part of the Gulf of Finland, Gulf of Riga, as well as the Kattegat and the Danish Straits.

Keywords

Baltic sea Sea level Baroclinic effects 

References

  1. 1.
    Belonenko, T., Zakharchuk, E., Fuks, V.: Gradient-vorticity waves in the ocean. Saint-Petersburg State University (2004)Google Scholar
  2. 2.
    Blumberg, A., Mellor, G.: A Description of a Three-Dimensional Coastal Ocean Circulation Model, pp. 1–16. American Geophysical Union (2013)Google Scholar
  3. 3.
    Briegleb, B., Bitz, C., Hunke, E., Lipscomb, W., Holland, M., Schramm, J., Moritz, R., et al.: Scientific description of the sea ice component in the community climate system model, version three (2004)Google Scholar
  4. 4.
    Brydon, D., Sun, S., Bleck, R.: A new approximation of the equation of state for seawater, suitable for numerical ocean models. J. Geophys. Res. Oceans 104(C1), 1537–1540 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Copernicus, Marine Environment Monitoring Service. http://marine.copernicus.eu. Accessed 30 Nov 2017
  6. 6.
    Diansky, N.: Modelling of the ocean circulation and investigation of its responce to the short-range and long-range atmospheric forcing. Physmatlit, Moscow (2013)Google Scholar
  7. 7.
    Hünicke, B., Zorita, E., Soomere, T., Madsen, K., Johansson, M., Suursaar, Ü.: Recent change – sea level and wind waves. In: T.B.I.A. Team (ed.) Second Assessment of Climate Change for the Baltic Sea Basin, pp. 155–185. Springer, Cham (2015)Google Scholar
  8. 8.
    Hunke, E., Dukowicz, J.: An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr. 27(9), 1849–1867 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    Ibrayev, R.: Model of enclosed and semi-enclosed sea hydrodynamics. Russ. J. Numer. Anal. Math. Modell. 16(4), 291–304 (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Ibrayev, R., Khabeev, R., Ushakov, K.: Eddy-resolving 1/10 model of the world ocean. Izv. Atmos. Oceanic Phys. 48(1), 37–46 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Leppäranta, M., Myrberg, K.: Physical Oceanography of the Baltic Sea. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Medvedev, I.: Spectrum of the Baltic Sea level variability in the range of transitions from hours to days. Ph.D. thesis, IO RAS (2014)Google Scholar
  13. 13.
    Pacanowski, R., Griffies, S.: Mom 3.0 manual. GFDL Ocean Group Technical Report 4, 680 (1999)Google Scholar
  14. 14.
    Pedlosky, J.: Geophysical Fluid Dynamics. Springer, Heidelberg (1982)CrossRefMATHGoogle Scholar
  15. 15.
    Shchepetkin, A., McWilliams, J.: Accurate boussinesq oceanic modeling with a practical “stiffened” equation of state. Ocean Model. 38(1), 41–70 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Tareev, B.: Dynamics of baroclnic perturbations in the ocean. Moscow State University (1974)Google Scholar
  17. 17.
    Terziev, F., Rozhkov, V., Smirnova, A. (eds.): Project “Seas of USSR”. Hydrometeorology and hydrochemistry of USSR’s seas, vol. III, Baltic Sea, Issue I. Hydrometeorological conditions. Hydrometeoizdat, Saint-Petersburg (1992)Google Scholar
  18. 18.
    Yakovlev, N.: Reproduction of the large-scale state of water and sea ice in the Arctic Ocean in 1948–2002: part I. numerical model. Izv. Atmos. Oceanic Phys. 45(3), 357–371 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Zakharchuk, E. (ed.): Dynamics of the Baltic Sea waters in synoptic range of spatio-temporal scales. Hydrometeoizdat, Saint-Petersburg (2007)Google Scholar
  20. 20.
    Zakharchuk, E., Klevantsov, Y., Tikhonova, N.A.: Space-time structure and identification of synoptic disturbances of the Baltic Sea level from satellite altimetric measurements. Russ. Meteorol. Hydrol. 31(5), 53–60 (2006)Google Scholar
  21. 21.
    Zakharchuk, E., Sukhachev, V.: On the problem of the Neva river flood waves identification. Russ. Meteorol. Hydrol. 38(3), 185–190 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySaint-PetersburgRussia
  2. 2.Saint-Petersburg Branch of N.N.Zubov State Oceanographic InstituteSaint-PetersburgRussia
  3. 3.N.N. Zubov State Oceanographic InstituteMoscowRussia
  4. 4.Institute of Numerical Mathematics of the Russian Academy of SciencesMoscowRussia
  5. 5.P.P. Shirshov Institute of Oceanology of the Russian Academy of SciencesMoscowRussia

Personalised recommendations