A Comparative Analysis of Optical Methods for Detection and Prediction of Radionuclides Migration in the Geosphere

  • B. P. Yakimov
  • G. S. Budylin
  • V. G. Petrov
  • V. V. Fadeev
  • S. N. Kalmykov
  • S. A. Evlashin
  • E. A. Shirshin
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)


Here we report on a comparative analysis of laser techniques for detection and speciation of radionuclides and its complexes in the geosphere. The application of different methods is illustrated by the example of uranium(VI) speciation in aqueous environment and detection of trace elements on the ppm level in gases, which appear as a result of reprocessing of spent nuclear fuel.


Laser spectroscopy Radionuclides Speciation Time-resolved fluorimetry 



The work was supported by the Russian Federation President’s grant (MK-9394.2016.2) and grant № 8719GU/2015 from 16.12.2015 (code 0019175), competition UMNIK 15-11.


  1. 1.
    Meinrath, A., Schneider, P., Meinrath, G.: Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen Germany. J. Environ. Radioact. 64(2), 175–193 (2003)CrossRefGoogle Scholar
  2. 2.
    Arnold, T., Baumann, N., Krawczyk-Bärsch, E., Brockmann, S., Zimmermann, U., Jenk, U., Weiß, S.: Identification of the uranium speciation in an underground acid mine drainage environment. Geochim. Cosmochim. Acta 75(8), 2200–2212 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Budylin, G., Shirshin, E., Fadeev, V., Petrov, V., Kalmykov, S.: Laser-induced fluorescence of uranyl complexes in aqueous solutions: the role of diffusion-controlled excited states annihilation. Opt. Express 21(18), 20517–20528 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Batuk, D.N., Shiryaev, A.A., Kalmykov, S.N., Batuk, O.N., Romanchuk, A.Y., Shirshin, E.A., Zubavichus, Y.V.: Sorption and speciation of uranium on silica colloids. In: Actinide Nanoparticle Research, pp. 315–332. Springer Berlin, Heidelberg (2011)Google Scholar
  5. 5.
    Billard, I., Geipel, G.: Luminescence analysis of actinides: instrumentation, applications, quantification, future trends, and quality assurance. In: Standardization and Quality Assurance in Fluorescence Measurements I, pp. 465–492 (2008)Google Scholar
  6. 6.
    Geipel, G., et al.: Uranium (VI) sulfate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim. Acta 75(4), 199–204 (1996)CrossRefGoogle Scholar
  7. 7.
    Billard, I., et al.: Aqueous solutions of uranium (VI) as studied by time-resolved emission spectroscopy: a round-robin test. Appl. Spectrosc. 57(8), 1027–1038 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Gracheva, N.N., Romanchuk, A.Y., Smirnov, E.A., Meledina, M.A., Garshev, A.V., Shirshin, E.A., Kalmykov, S.N.: Am (III) sorption onto TiO 2 samples with different crystallinity and varying pore size distributions. Appl. Geochem. 42, 69–76 (2014)CrossRefGoogle Scholar
  9. 9.
    Noll, R.: Laser-induced breakdown spectroscopy, pp. 7–15. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Dyakonov, P., Mironovich, K., Svyakhovsky, S., Voloshina, O., Dagesyan, S., Panchishin, A., Suetin, N., Bagratashvili, V., Timashev, P., Shirshin, E., Evlashin, S.: Carbon nanowalls as a platform for biological SERS studies. Sci. Rep. 7(1), 13352 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, J., Neck, V., Palmer, D., Rand, M.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Elsevier Science Publishers, Amsterdam (2003)Google Scholar
  12. 12.
    Puigdomenech, I.: Chemical Equilibrium Diagrams.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of ChemistryM.V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Skolkovo Institute of Science and TechnologyMoscowRussia

Personalised recommendations