Understanding of Rock Material Behavior Under Dynamic Loadings Based on Incubation Time Criteria Approach

  • A. N. Martemyanov
  • Yu. V. Petrov
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)


Different rock material dynamic laboratory tests have been analyzed with the help of incubation time criteria approach. As a result of made calculations incubation times for such rocks like granite, marble, limestone, sandstone and traverline have been estimated. This parameter according to criteria theory rule material behavior under high rate loadings. Effects of effective porosity and anisotropy on incubation time value have been considered. Experiments under high rate loadings with different saturation and temperatures have been demonstrated influence of physical conditions changes on incubation time parameter.


Incubation time Rock strength Dynamic loadings 



The work was supported by the Russian Science Foundation (grant 17-11-01053).


  1. 1.
    Asprone, D., Cadoni, E., Prota, A., Manfredi, G.: Dynamic behavior of a Mediterranean natural stone under tensile loading. Int. J. Rock Mech. Min. Sci. 46, 514–520 (2009)CrossRefGoogle Scholar
  2. 2.
    Bragov, A.M., Petrov, Yu.V., Karihaloo, B.L., Konstantinov, A.Yu., Lamzin, D.A., Lomunov, A.K., Smirnov, I.V.: Dynamic strengths and toughness of an ultra-high performance fibre reinforced concrete. Eng. Fract. Mech. 110, 477–488 (2013)CrossRefGoogle Scholar
  3. 3.
    Bragov, A.M., Karihaloo, B.L., Petrov, Yu.V., Konstantinov, A.Yu., Lamzin, D.A., Lomunov, A.K., Smirnov, I.V.: High-rate deformation and fracture of fiber reinforced concrete. J. Appl. Mech. Tech. Phys. 53(6), 926–933 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Bragov, A.M., Konstantinov, A.Yu., Petrov, Yu.V., Evstifeev, A.D.: Structural-temporal approach for dynamic strength characterization of rock. Mater. Phys. Mech. 23, 61–65 (2015)Google Scholar
  5. 5.
    Bratov, V.A., Gruzdkov, A.A., Krivosheev, S.I., Petrov, Yu.V.: Energy balance in the crack growth initiation under pulsed-load conditions. Dokl. Phys. 49(5), 338–341 (2004)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Cai, M., Kaiser, P.K., Suorineni, F., Su, K.: A study on the dynamic behavior of the Meuse/Haute-Marne argillite. Phys. Chem. Earth 32, 907–916 (2007)CrossRefGoogle Scholar
  7. 7.
    Cadoni, E.: Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension. Rock Mech. Rock Eng. 43, 667–676 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Cho, S.H., Ogata, Y., Kaneko, K.: Strain-rate dependency of the dynamic tensile strength of rock. Int. J. Rock Mech. Min. Sci. 40, 763–777 (2003)CrossRefGoogle Scholar
  9. 9.
    Dai, F., Huang, S., Xia, K., Tan, Z.: Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech. Rock Eng. 43, 657–666 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Dai, F., Xia, K., Tang, L.: Rate dependence of the flexural tensile strength of Laurentian granite. Int. J. Rock Mech. Min. Sci. 47(3), 469–475 (2010)CrossRefGoogle Scholar
  11. 11.
    Dai, F., Chen, R., Iqbal, M.J., Xia, K.: Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters. Int. J. Rock Mech. Min. Sci. 47, 606–613 (2010)CrossRefGoogle Scholar
  12. 12.
    Dai, F., Xia, K.: Loading rate dependence of tensile strength anisotropy of Barre granite. Pure. appl. Geophys. 167, 1419–1432 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Dufta, P.K., Kim, K.O.: High-strain- rate tensile behavior of sedimentary and igneous rocks at low temperatures. CRREL Report, 93-16 (1993)Google Scholar
  14. 14.
    Goldsmith, W., Sackman, J.L., Ewert, C.: Static and dynamic fracture strength of Barre granite. Int. J. Rock Mech. Lin. Sci. Geomech. Abstr. 13, 303–309 (1976)CrossRefGoogle Scholar
  15. 15.
    Howe, S.P., Goldsmith, W., Sackman, J.L.: Macroscopic static and of Yule marble. Exp. Mech. 8, 337–346 (1974)CrossRefGoogle Scholar
  16. 16.
    Huang, S., Chen, R., Xia, K.W.: Quantification of dynamic tensile parameters of rocks using a modified Kolsky tension bar apparatus. J. Rock Mech. Geotechn. Eng. 2(2), 162–168 (2010)CrossRefGoogle Scholar
  17. 17.
    Huang, S., Xia, K., Yan, F., Feng, X.: An experimental study of the rate dependence of tensile strength softening of Longyou sandstone. Rock Mech. Rock Eng. 43, 677–683 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Khan, A.S., Irani, F.K.: An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite. Mech. Mater. 6, 285–292 (1987)CrossRefGoogle Scholar
  19. 19.
    Kubota, S., Ogata, Y., Wada, Y., Simangunsong, G., Shimada, H., Matsui, K.: Estimation of dynamic tensile strength of sandstone. Int. J. Rock Mech. Min. Sci. 45, 397–406 (2008)CrossRefGoogle Scholar
  20. 20.
    Lu, D., Wang, G., Du, X., Wang, Y.: A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete. Int. J. Impact Eng. 103, 124–137 (2017)CrossRefGoogle Scholar
  21. 21.
    Morozov, N.F., Petrov, Yu.V.: Dynamics of fracture. Springer, Berlin (2000)Google Scholar
  22. 22.
    Petrov, Yu.V., Utkin, A.A.: Dependence of the dynamic strength on loading rate. Mater. Sci. 25, 153–156 (1989)CrossRefGoogle Scholar
  23. 23.
    Petrov, Yu.V.: On the “quantum” nature of dynamic fracture in brittle solids. Sov. Phys. Dokl. 36, 802–804 (1991)ADSGoogle Scholar
  24. 24.
    Petrov, Yu.V., Morozov, N.F.: On the modeling of fracture of brittle solids. J. Appl. Mech. 61(3), 710–712 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    Petrov, Yu.V., Morozov, N.F., Smirnov, V.I.: Structural macromechanics approach in dynamics of fracture. Fatigue Fract. Eng. Mater. Struct. 26, 363–372 (2003)CrossRefGoogle Scholar
  26. 26.
    Petrov, Yu.V.: Incubation time criterion and the pulsed strength of continua: fracture, cavitation, and electrical breakdown. Dokl. Phys. 49, 246–249 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Petrov, Yu.V., Karihaloo, B.L., Bratov, V.V., Bragov, A.M.: Multi-scale dynamic fracture model for quasi-brittle materials. Int. J. Eng. Sci. 61, 3–9 (2012)CrossRefGoogle Scholar
  28. 28.
    Smirnov, I., Konstantinov, A.Yu., Lomunov, A., Bragov, A., Petrov, Yu.V.: The structural temporal approach to dynamic and quasi-static strengthof rocks and concrete (2017)Google Scholar
  29. 29.
    Volkov, G.A., Bratov, V.A., Gruzdkov, A.A., Babitsky, V.I., Petrov, Yu.V., Silberschmidt, V.V.: Energy based analysis of ultrasonically assisted turning. Shock Vib. 18, 333–341 (2011)Google Scholar
  30. 30.
    Wang, Q.Z., Li, W., Xie, H.P.: Dynamic split tensile test of Flattened Brazilian Disc of rock with SHPB setup. Mech. Mater. 41, 252–260 (2009)CrossRefGoogle Scholar
  31. 31.
    Yan, F., Feng, X., Chen, R., Xia, K., Jin, C.: Dynamic tensile failure of the rock interface between tuff and basalt. Rock Mech. Rock Eng. 45, 341–348 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Zhang, Q.B., Zhao, J.: A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech. Rock Eng. 47(4), 1411–1478 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Zhang, Q.B., Zhao, J.: Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int. J. Rock Mech. Min. Sci. 60, 423–439 (2013)Google Scholar
  34. 34.
    Zhao, J., Li, H.B.: Experimental determination of dynamic tensile properties of a granite. Int. J. Rock Mech. Min. Sci. 37, 861–866 (2000)CrossRefGoogle Scholar
  35. 35.
    Yavuz, H., Tufekci, K., Kayacan, R., Cevizci, H.: Predicting the dynamic compressive strength of carbonate rocks from quasi-static properties. Exp. Mech. 53, 367–376 (2013)CrossRefGoogle Scholar
  36. 36.
    Demirdag, S., Tufekci, K., Kayacan, R., Yavuz, H., Altindag, R.: Dynamic mechanical behavior of some carbonate rocks. Int. J. Rock Mech. Min. Sci. 47, 307–312 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.St.-Petersburg State UniversitySt. PetersburgRussia
  2. 2.IPME RASSt. PetersburgRussia

Personalised recommendations