Advertisement

Comparison of Empirical Sea-Surface Slopes Probability Densities for the Purposes of Satellite Sounding

  • Nick Evgenievich Lebedev
  • Alexandr Sergeevich Zapevalov
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

Based on a comparison of Cox-Munk and Bréon-Henriot empirical models of the sea-surface slopes probability density that are more close to the results of satellite observations as compared to other empirical models, an estimate of their practical error for winds equal to 1, 3, 7, 14 m/s is presented. Also, values of the discrepancy between the Cox-Munk model and that frequently used simplified forms are calculated, along with the discrepancy between the Cox-Munk model and its modification that, unlike the original one, is non-negative for all possible slopes and wind speeds. The physical causes of the discrepancy between the Cox-Munk and Bréon-Henriot models typical for small and large wind speeds are considered. It is shown that to reduce the systematic errors of empirical models of the sea-surface slopes probability density, it is necessary to study and take into account the effect of thermal stability of the marine boundary layer on their parameters.

Keywords

Sea surface slopes Probability density Error Sun glint 

References

  1. 1.
    Barale, V., Gower, J.F.R., Alberotanza, L. (eds.): Oceanography from Space: Revisited, 1st edn. Springer, Netherlands (2010). https://doi.org/10.1007/978-90-481-8681-5 Google Scholar
  2. 2.
    Lebedev, N.E., Aleskerova, A.A., Plotnikov, E.V.: The development of optical methods for sea surface slope measurement (In Russian). Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 13(3), 136–149 (2016).  https://doi.org/10.21046/2070-7401-2016-13-3-136-149 CrossRefGoogle Scholar
  3. 3.
    Cox, C., Munk, W.: Measurements of the roughness of the sea surface from photographs of the sun glitter. J. Optical Soc. Am. 44(11), 838–850 (1954)ADSCrossRefGoogle Scholar
  4. 4.
    Bréon, F.M., Henriot, N.: Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. J. Geoph. Res. Oceans 111(C6), C06005 (2006).  https://doi.org/10.1029/2005JC003343 ADSGoogle Scholar
  5. 5.
    Zhang, H., Wang, M.: Evaluation of sun glint models using MODIS measurements. J. Quant. Spectrosc. Radiat. Transf. 111, 492–506 (2010).  https://doi.org/10.1016/j.jqsrt.2009.10.001 ADSCrossRefGoogle Scholar
  6. 6.
    Ross, V., Dion, D.: Assessment of sea slope statistical models using a detailed micro-facet BRDF and upwelling radiance measurements. In: Proceedings of the SPIE 5572, Optics in Atmospheric Propagation and Adaptive Systems VII, pp. 112–122 (2004).  https://doi.org/10.1117/12.565127
  7. 7.
    Hu, Y., Stamnes, K., Vaughan, M., Pelon, J., Weimer, C., Wu, D., Cisewski, M., Sun, W., Yang, P., Lin, B., Omar, A., Flittner, D., Hostetler, C., Trepte, C., Winker, D., Gibson, G., Santa-Maria, M.: Sea surface wind speed estimation from space-based lidar measurements. Atmos. Chem. Phys. 8, 3593–3601 (2008).  https://doi.org/10.5194/acp-8-3593-2008 ADSCrossRefGoogle Scholar
  8. 8.
    Liu, Y., Yan, X.-H., Liu, W.T., Hwang, P.A.: The probability density function of ocean surface slopes and its effects on radar backscatter. J. Phys. Oceanogr. 27, 782–797 (1997).  https://doi.org/10.1175/1520-0485(1997)027<0782:tpdfoo>2.0.co;2
  9. 9.
    Zapevalov, A.S.: Probability of mirror reflection glitters during oblique sounding of the sea surface (In Russian). Oceanology 45(1), 11–15 (2005)Google Scholar
  10. 10.
    Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics: Distribution theory, vol. 1. C. Griffin, London (1977)zbMATHGoogle Scholar
  11. 11.
    Smith, S.D.: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res. 93(C12), 15467–15472 (1988).  https://doi.org/10.1029/JC093iC12p15467 ADSCrossRefGoogle Scholar
  12. 12.
    Zapevalov, A.S., Lebedev, N.E.: Simulation of statistical characteristics of sea surface during remote optical sensing (In Russian). Atmos. Oceanic Optics 27(6), 487–492 (2014).  https://doi.org/10.1134/S1024856014060220 CrossRefGoogle Scholar
  13. 13.
    Anguelova, M.D., Webster, F.: Whitecap coverage from satellite measurements: a first step toward modeling the variability of oceanic whitecaps. J. Geophys. Res. 111(C3), C03017 (2006).  https://doi.org/10.1029/2005JC003158 ADSCrossRefGoogle Scholar
  14. 14.
    Shaw, J.A., Churnside, J.H.: Scanning–laser glint measurements of sea–surface slope statistics. Appl. Optics 36(18), 4202–4213 (1997).  https://doi.org/10.1364/AO.36.004202 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Marine Hydrophysical Institute RASSevastopolRussian Federation

Personalised recommendations