Skip to main content

Comparison of Empirical Sea-Surface Slopes Probability Densities for the Purposes of Satellite Sounding

  • Conference paper
  • First Online:
Physical and Mathematical Modeling of Earth and Environment Processes (PMMEEP 2017)

Abstract

Based on a comparison of Cox-Munk and Bréon-Henriot empirical models of the sea-surface slopes probability density that are more close to the results of satellite observations as compared to other empirical models, an estimate of their practical error for winds equal to 1, 3, 7, 14 m/s is presented. Also, values of the discrepancy between the Cox-Munk model and that frequently used simplified forms are calculated, along with the discrepancy between the Cox-Munk model and its modification that, unlike the original one, is non-negative for all possible slopes and wind speeds. The physical causes of the discrepancy between the Cox-Munk and Bréon-Henriot models typical for small and large wind speeds are considered. It is shown that to reduce the systematic errors of empirical models of the sea-surface slopes probability density, it is necessary to study and take into account the effect of thermal stability of the marine boundary layer on their parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barale, V., Gower, J.F.R., Alberotanza, L. (eds.): Oceanography from Space: Revisited, 1st edn. Springer, Netherlands (2010). https://doi.org/10.1007/978-90-481-8681-5

    Google Scholar 

  2. Lebedev, N.E., Aleskerova, A.A., Plotnikov, E.V.: The development of optical methods for sea surface slope measurement (In Russian). Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 13(3), 136–149 (2016). https://doi.org/10.21046/2070-7401-2016-13-3-136-149

    Article  Google Scholar 

  3. Cox, C., Munk, W.: Measurements of the roughness of the sea surface from photographs of the sun glitter. J. Optical Soc. Am. 44(11), 838–850 (1954)

    Article  ADS  Google Scholar 

  4. Bréon, F.M., Henriot, N.: Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. J. Geoph. Res. Oceans 111(C6), C06005 (2006). https://doi.org/10.1029/2005JC003343

    ADS  Google Scholar 

  5. Zhang, H., Wang, M.: Evaluation of sun glint models using MODIS measurements. J. Quant. Spectrosc. Radiat. Transf. 111, 492–506 (2010). https://doi.org/10.1016/j.jqsrt.2009.10.001

    Article  ADS  Google Scholar 

  6. Ross, V., Dion, D.: Assessment of sea slope statistical models using a detailed micro-facet BRDF and upwelling radiance measurements. In: Proceedings of the SPIE 5572, Optics in Atmospheric Propagation and Adaptive Systems VII, pp. 112–122 (2004). https://doi.org/10.1117/12.565127

  7. Hu, Y., Stamnes, K., Vaughan, M., Pelon, J., Weimer, C., Wu, D., Cisewski, M., Sun, W., Yang, P., Lin, B., Omar, A., Flittner, D., Hostetler, C., Trepte, C., Winker, D., Gibson, G., Santa-Maria, M.: Sea surface wind speed estimation from space-based lidar measurements. Atmos. Chem. Phys. 8, 3593–3601 (2008). https://doi.org/10.5194/acp-8-3593-2008

    Article  ADS  Google Scholar 

  8. Liu, Y., Yan, X.-H., Liu, W.T., Hwang, P.A.: The probability density function of ocean surface slopes and its effects on radar backscatter. J. Phys. Oceanogr. 27, 782–797 (1997). https://doi.org/10.1175/1520-0485(1997)027<0782:tpdfoo>2.0.co;2

  9. Zapevalov, A.S.: Probability of mirror reflection glitters during oblique sounding of the sea surface (In Russian). Oceanology 45(1), 11–15 (2005)

    Google Scholar 

  10. Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics: Distribution theory, vol. 1. C. Griffin, London (1977)

    MATH  Google Scholar 

  11. Smith, S.D.: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res. 93(C12), 15467–15472 (1988). https://doi.org/10.1029/JC093iC12p15467

    Article  ADS  Google Scholar 

  12. Zapevalov, A.S., Lebedev, N.E.: Simulation of statistical characteristics of sea surface during remote optical sensing (In Russian). Atmos. Oceanic Optics 27(6), 487–492 (2014). https://doi.org/10.1134/S1024856014060220

    Article  Google Scholar 

  13. Anguelova, M.D., Webster, F.: Whitecap coverage from satellite measurements: a first step toward modeling the variability of oceanic whitecaps. J. Geophys. Res. 111(C3), C03017 (2006). https://doi.org/10.1029/2005JC003158

    Article  ADS  Google Scholar 

  14. Shaw, J.A., Churnside, J.H.: Scanning–laser glint measurements of sea–surface slope statistics. Appl. Optics 36(18), 4202–4213 (1997). https://doi.org/10.1364/AO.36.004202

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Evgenievich Lebedev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lebedev, N.E., Zapevalov, A.S. (2018). Comparison of Empirical Sea-Surface Slopes Probability Densities for the Purposes of Satellite Sounding. In: Karev, V., Klimov, D., Pokazeev, K. (eds) Physical and Mathematical Modeling of Earth and Environment Processes. PMMEEP 2017. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-77788-7_21

Download citation

Publish with us

Policies and ethics