Principles of Controlling the Apparatus Function for Achieving Super-Resolution in Imagers

  • E. N. Terentiev
  • N. E. Terentiev
  • I. I. Farshakova
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)


When controlling the Apparatus Function (AF), the size of definition domain of the AF O and the sampling step and conditionality of the AF must be chosen so that its inverse function \( {\text{pR}} = {\text{pO}}^{ - 1} \) obtains a minimum norm. The compensation of the AF O distortions in the measured images is realized point-by-point (without using the Fourier Transform in convolution). The computer of the device uses the resolving function pR, selected by the controlling procedure, for achieving super-resolution in images. Such controlled super-resolution is demonstrated on the Martian images.


Regularization method Super-resolution Conditionality Invertibility Modulation Transfer Function Convolution Fourier Transform 


  1. 1.
    Tikhonov, A.N., Ufimtsev, M.V.: Statistical Processing of Experimental Results. Publishing House of Moscow University, Moscow (1988). (in Russian)Google Scholar
  2. 2.
    Terentiev, E.N., Terentiev, N.E.: Izvestiya RAN. Physics 79(12), 1633–1637 (2015). (in Russian)Google Scholar
  3. 3.
    Terentiev, E.N., Terentiev, N.E.: Bulletin of the Russian academy of science. Physics 79(12), 1427–1431 (2015). zbMATHGoogle Scholar
  4. 4.
    Terentiev, E.N., Terentiev, N.E., Farshakova, I.I.: Scientific conference “Lomonosov Readings”, section of physics, pp. 187–190 (2017). (in Russian)Google Scholar
  5. 5.
    Terentiev, E.N., Terentiev, N.E., Farshakova, I.I.: Proceedings of the school-seminar ≪Waves-2017≫. Mathematical modeling in radio physics and optics, pp. 56–58 (2017). (in Russian)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physical FacultyM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.HiQo SolutionsMoscowRussia

Personalised recommendations