Skip to main content

Field Investigation and Numerical Simulation of Wind-Wave Interaction at the Middle-Sized Inland Reservoirs

  • Conference paper
  • First Online:
Book cover Physical and Mathematical Modeling of Earth and Environment Processes (PMMEEP 2017)

Abstract

An attempt is made to apply the modern methods of surface wave simulation developed for oceanic conditions to the modeling of waves in medium-size inland reservoirs (10–100 km). The results of field measurements of wind speed and waves are described, and on their basis the parameterization \( C_{D} \left( {U_{10} } \right) \) is proposed. WAVEWATCH III spectral wave model was adapted to the conditions of a medium-size inland reservoir. The simulated data are compared with the field data. The use of the new parameterization \( C_{D} \left( {U_{10} } \right) \) allowed reducing the values of the wind wave growth rate that improved consistency in data from the field experiment and numerical modeling concerning the height of significant waves. Further steps towards improving the quality of prediction of the adapted WAVEWATCH III model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tolman H.L., WAVEWATCH III Development Group: User Manual and System Documentation of WAVEWATCH III Version 4.18. Environmental Modeling Center, Marine Modeling and Analysis Branch (2014)

    Google Scholar 

  2. Poddubnyi, S.A., Sukhova, E.V.: Modeling the Effects of Hydrodynamic and Anthropogenic Factors on the Distribution of Hydrobionts in Reservoirs. User’s Manual. Rybinskii Dom Pechati, Rybinsk (2002). (in Russian)

    Google Scholar 

  3. Sutyrina, E.N.: Determination of Wave Characteristics in the Bratsk Reservoir. Izvestiya Irkutskogo Gosudarstvennogo Universiteta, vol. 2, no. 4 (2011). (in Russian)

    Google Scholar 

  4. Newton-Matza, M.: Disasters and Tragic Events: An Encyclopedia of Catastrophes in American History. ABC-CLIO, Santa Barbara (2014)

    Google Scholar 

  5. Alves, J.-H.G.M., Chawla, A., Tolman, H.L., et al.: The great lakes wave model at NOAA/NCEP: challenges and future developments. In: 12th International Workshop on Wave Hindcasting and Forecasting, Kohala Coast, Hawaii (2011)

    Google Scholar 

  6. Alves, J.-H.G.M., Chawla, A., Tolman, H.L., et al.: The operational implementation of a great lakes wave forecasting system at NOAA/NCEP. Weather Forecast. 29, 1473–1497 (2014)

    Article  ADS  Google Scholar 

  7. NWW3 Product Viewer. http://polar.ncep.noaa.gov/waves/viewer.shtml7-glw-latest-hs-grl. Accessed 27 Nov 2017

  8. SWAN Team: SWAN - User Manual. Delft University of Technology, Environmental Fluid Mechanics Section (2006)

    Google Scholar 

  9. Lopatoukhin, L.J., Boukhanovsky, A.V., Chernyshova, E.S., Ivanov, S.V.: Hindcasting of wind and wave climate of seas around Russia. In: Proceedings of the 8th International Workshop on Waves Hindcasting and Forecasting, North Shore, Oahu, Hawaii (2004)

    Google Scholar 

  10. Gunter, H., Hasselmann, S., Janssen, P.A.E.M.: The WAM model cycle 4. Technical report no. 4. DKRZ WAM4 Model Documentation, Hamburg (1992)

    Google Scholar 

  11. Hesser, T.J., Cialone, M.A., Anderson, M.E.: Lake St. Clair: Storm Wave and Water Level Modeling. The US Army Research and Development Center (ERDC) (2013)

    Google Scholar 

  12. Atakturk, S.S., Katsaros, K.B.: Wind stress and surface waves observed on lake Washington. J. Phys. Oceanogr. 29, 633–650 (1999)

    Article  ADS  Google Scholar 

  13. Babanin, A.V., Makin, V.K.: Effects of wind trend and gustiness on the sea drag: lake George Study. J. Geophys. Res. 113, C02015 (2008)

    Article  ADS  Google Scholar 

  14. Miles, J.W.: On the generation of surface waves by shear flows. J. Fluid Mech. 3(2), 185–204 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Weber, R.O.: Remarks on the definition and estimation of friction velocity. Bound. Layer Meteorol. 93, 197–209 (1999)

    Article  ADS  Google Scholar 

  16. Setton, O.G.: Micrometeorology. Gidrometeoizdat, Leningrad (1958). (Transl. from Engl.)

    Google Scholar 

  17. Zakharov, V.E.: On the domination of nonlinear wave interaction in the energy balance of wind-driven sea. In: Proceedings of 11th Wave Workshop, Halifax, Canada (2009)

    Google Scholar 

  18. Komen, G.L., Hasselmann, S., Hasselmann, K.: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 8(14), 1271–1285 (1984)

    Article  ADS  Google Scholar 

  19. Snyder, R.L., Dobson, F.W., Elliott, J.A., Long, R.B.: Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech. 102, 1–59 (1981)

    Article  ADS  Google Scholar 

  20. Wu, J.: Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res. 87(C12), 9704–9706 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  21. Troitskaya, Y.I., Sergeev, D.A., Kandaurov, A.A., et al.: Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions. J. Geophys. Res. 117(C11), C00J21 (2012)

    Google Scholar 

  22. Donelan, M.A., Drennan, W.M., Magnusson, A.K.: Nonstationary analysis of the directional properties of propagating waves. J. Phys. Oceanogr. 26(9), 1901–1914 (1996)

    Article  ADS  Google Scholar 

  23. Brooke, B.T.: Shearing flow over a wavy boundary. J. Fluid Mech. 6, 161–205 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  24. Belcher, S.E., Hunt, J.C.R.: Turbulent shear flow over slowly moving waves. J. Fluid Mech. 251, 109–148 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Fairall, C.W., Bradley, E.F., Hare, J.E., et al.: Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J. Clim. 4(16), 571–591 (2003)

    Article  ADS  Google Scholar 

  26. Hasselmann, S., Hasselmann, K.: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: a new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr. 15, 1369–1377 (1985)

    Article  ADS  Google Scholar 

  27. Hasselmann, S., Hasselmann, K., Allender, J.H., Barnett, T.P.: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: parameterizations of nonlinear energy transfer for application in wave models. J. Phys. Oceanogr. 15, 1378–1391 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research was supported by the Russian Foundation for Basic Research (grants 17-05-41117 and 15-45-02580). The field experiments were supported by the Russian Scientific Foundation (grant 15-17-20009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Baydakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baydakov, G.A. et al. (2018). Field Investigation and Numerical Simulation of Wind-Wave Interaction at the Middle-Sized Inland Reservoirs. In: Karev, V., Klimov, D., Pokazeev, K. (eds) Physical and Mathematical Modeling of Earth and Environment Processes. PMMEEP 2017. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-77788-7_13

Download citation

Publish with us

Policies and ethics