Vertical Mass Transport by Weakly Nonlinear Inertia-Gravity Internal Waves

Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

In the Boussinesq approximation, free inertia-gravity internal waves are considered in a two-dimensional vertically non-uniform flow. In the linear approximation was find vertical distribution of the amplitude of the vertical velocity and the dispersion relation. The boundary-value problem for internal waves has complex coefficients when the flow velocity component, transverse to the wave propagation direction depends on the vertical coordinate. Therefore, the eigenfunction and frequency of the wave are complex (it is shown that there is a weak damping of the wave). Vertical wave mass fluxes are nonzero. The vertical component of the Stokes drift velocity also differs from zero and contributes to the wave transport. A non-oscillating on a time scale of the wave correction to the average density, which is interpreted as an irreversible vertical fine structure generated by a wave, is determined on the second order of amplitude.

Keywords

Inertia-gravity internal waves Stokes drift Wave fluxes of mass Critical layers 

References

  1. 1.
    Le Blond, P.H., Mysak, L.: Waves in the Ocean. Elsevier, Amsterdam (1977); Part 2, 363 p. Mir, Moscow (1981)Google Scholar
  2. 2.
    Le Blond, P.H.: On damping of internal gravity waves in a continuously stratified ocean. J. Fluid Mech. 25(1), 121–142 (1966).  https://doi.org/10.1017/S0022112066000089 ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ostrovskii, L.A., Soustova, I.A.: The upper mixing layer as a sink of internal wave energy. Okeanologiya 19(6), 973–981 (1979)Google Scholar
  4. 4.
    Borisenko, Y.D., Voronovich, A.G., Leonov, A.I., Miropolsky, Y.Z.: On the theory of nonstationary weak-nonlinear internal waves in a stratified fluid. Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 12(3), 293–301 (1976)Google Scholar
  5. 5.
    Voronovich, A.G., Leonov, A.I., Miropolsky, Y.Z.: On the theory of the formation of a fine structure of hydrophysical fields in the ocean. Okeanologiya 11(5), 490–497 (1976)Google Scholar
  6. 6.
    Slepyshev, A.A.: Transport processes induced by weakly nonlinear internal waves in the presence of turbulence. Izv. Atmos. Ocean. Phys. 33(4), 536–548 (1997)Google Scholar
  7. 7.
    Nosova, A.V., Slepyshev, A.A.: Vertical flows induced weakly nonlinear internal waves on the shelf. Fluid Dyn. 50(1), 12–21 (2015).  https://doi.org/10.1134/S0015462815010020 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Miropolsky, Y.Z.: Dynamics of Internal Gravitational Waves in the Ocean, p. 30. Gidrometeoizdat, Leningrad (1981)Google Scholar
  9. 9.
    Banks, W.H., Drazin, P.G., Zaturska, M.B.: On the normal modes of parallel flow of inviscid stratified fluid. J. Fluid Mech. 75(1), 149–171 (1976).  https://doi.org/10.1017/S0022112076000153 ADSCrossRefMATHGoogle Scholar
  10. 10.
    Booker, J.B., Brethertone, F.P.: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech. 27(4), 513–539 (1967).  https://doi.org/10.1017/S0022112067000515 ADSCrossRefMATHGoogle Scholar
  11. 11.
    Jones, W.L.: Propagation of internal waves in fluids with shear flow and rotation. J. Fluid Mech. 30(3), 439–448 (1967).  https://doi.org/10.1017/S0022112067001521 ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kamke, E.: Differentialgleichungen. Lsungsmethoden und Lsungen, p. 244. Akademische Verlagsgesellschaft, Leipzig (1959)Google Scholar
  13. 13.
    Longuet-Higgins, M.S.: On the transport of mass by time varying ocean current. Deep-Sea Res. 16(5), 431–447 (1969)Google Scholar
  14. 14.
    Report on the work on the 44th voyage (3rd stage) of the NIS Mikhail Lomonosov August 7–September 15, 1985. MHI Academy of Sciences of the Ukrainian SSR, Sevastopol, vol. 1, p. 135 (1985)Google Scholar
  15. 15.
    Ivanov, V.A., Samodurov, A.S., Chukharev, A.M., Nosova, A.V.: Intensification of vertical turbulent exchange in areas of pairing of the shelf and the continental slope in the Black Sea. Dop. Nats. Akad. Nauk Ukr. 6, 108–112 (2008)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Marine Hydrophysical InstituteRussian Academy of SciencesSevastopolRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations