Advertisement

Synchronous Changes of Geophysical Fields in the Earth’s Near-Surface Zone

  • Svetlana Riabova
  • Alexander Spivak
Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

The research of Earth’s physical fields and their variations is particularly important to establish causes and mechanisms of changes in the environment and in the climate. The results of the analysis of instrumental observation concerning the variations in electric and magnetic fields, as well as acoustic vibrations in the near-surface Earth zone are considered in relation to the variations of meteorological parameters. We used the results of synchronous observations concerning physical fields carried out in the period of 2011–2014 in conductions of Geophysical observatory “Mikhnevo” of Institute of Geosphere Dynamics of Russian Academy of Science (IDG RAS) (Russia, Moscow region, settlement Mikhnevo; 54.959º N, 37.766º E). Synchronism of the variations of mentioned geophysical fields and change in atmospheric parameters has been determined, and for the first time not only synchronous, but advanced manifestations of geomagnetic field perturbations are shown, we introduce a new parameter - “reverse” magnetic tipper, variations of which due to atmospheric disturbances are more strongly marked in comparison with the variations of magnetic tipper.

Keywords

Atmospheric parameters Magnetic tipper Thunderstorm activity Barometric micropulsations Electric field variations 

References

  1. 1.
    Adushkin, V.V., Spivak, A.A.: Near-surface geophysics: complex investigations of the lithosphere-atmosphere interactions. Izv. Phys. Solid Earth 48(3), 181–198 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Adushkin, V.V., Ovtchinnikov, V.M., Sanina, I.A., Riznichenko, O.Y.: Mikhnevo: from seismic station N 1 to a modern geophysical observatory. Izv. Phys. Solid Earth 52(1), 105–116 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Anisimov, S.V., Mareev, E.A., Shikhova, N.M., Shatalina, M.V., Galichenko, S.V., Zilitinkevich, S.S.: Aeroelectric structures and turbulence in the atmospheric boundary layer. Nonlin. Process. Geophys. 20, 819–824 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Tuomi, T.J.: Atmospheric electrode affect: approximate theory and wintertime observations. Pure. Appl. Geophys. 119, 31–45 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    Gvishiani, A.D., Agayan, S.M., Bogoutdinov, S.R.: Fuzzy recognition of anomalies in time series. Dokl. Earth Sci. 421(1), 838–842 (2008)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Zelinskiy, N.R., Kleimenova, N.G., Kozyreva, O.V., Agayan, S.M., Bogoutdinov, S.R., Soloviev, A.A.: Algorithm for recognizing Pc3 geomagnetic pulsations in 1-s data from INTERMAGNET equatorial observatories. Izv. Phys. Solid Earth 50(2), 240–248 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Berdichevsky, M.N., Dmitriev, V.I., Golubtsova, N.S., Mershchikova, N.A., Pushkarev, P.Y.: Magnetovariational sounding: new possibilities. Izv. Phys. Solid Earth 39(9), 701–727 (2003)Google Scholar
  8. 8.
    Vozoff, K.: The magnetotelluric method in the exploration of sedimentary basins. Geophysics 37(1), 98–141 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    Larsen, J.C.: Transfer functions: smooth robust estimates by least-squares and remote reference methods. Geophys. J. Int. 99(3), 645–663 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    Larsen, J.C., Mackie, R.L., Manzella, A., Fiordelisi, A., Rieven, S.: Robust smooth magnetotelluric transfer functions. Geophys. J. Int. 124(3), 801–819 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    Balachandran, N.K.: Gravity waves from thunderstorms. Mon. Weather Rev. 108(6), 804–816 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    Danilov, S.D., Svertilov, A.I.: Internal gravity waves generated by a passage of thunderstorm. Izv. Atmos. Oceanic Phys. 27(3), 234–242 (1991)Google Scholar
  13. 13.
    Lancaster, P.: Theory of Matrices. Academic Press, New York (1969)zbMATHGoogle Scholar
  14. 14.
    Nakamura, Y.: A method for dynamic characteristic estimation of subsurface using microtremor on the ground surface. Q. Report Railway Tech. Res. Inst. 30(1), 25–33 (1989)Google Scholar
  15. 15.
    Steimen, S., Fah, D., Kind, F., Schmid, Ch., Giardini, D.: Identifying 2D resonance in microtremor wave fields. Bull. Seismol. Soc. Am. 93(2), 583–599 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Geospheres Dynamics of Russian Academy of ScienceMoscowRussia

Personalised recommendations