Skip to main content

Morphological Neural Networks with Dendritic Processing for Pattern Classification

  • Chapter
  • First Online:
Advanced Topics on Computer Vision, Control and Robotics in Mechatronics

Abstract

Morphological neural networks, in particular, those with dendritic processing (MNNDPs), have shown to be a very promising tool for pattern classification. In this chapter, we present a survey of the most recent advances concerning MNNDPs. We provide the basics of each model and training algorithm; in some cases, we present simple examples to facilitate the understanding of the material. In all cases, we compare the described models with some of the state-of-the-art counterparts to demonstrate the advantages and disadvantages. In the end, we present a summary and a series of conclusions and trends for present and further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arce, F., Zamora, E., Sossa, H., & Barrón, R. (2016). Dendrite morphological neural networks trained by differential evolution. In Proceedings of 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece (vol. 1, pp. 1–8).

    Google Scholar 

  • Arce, F., Zamora, E., Sossa, H., & Barrón, R. (2017). Differential evolution training algorithm for dendrite morphological neural networks. Under Review in Applied Soft Computing.

    Google Scholar 

  • Ardia, D., Boudt, K., Carl, P., Mullen, K., & Peterson, B. (2011). Differential evolution with DEoptim: An application to non-convex portfolio optimization. The R Journal, 3(1), 27–34.

    Google Scholar 

  • Asuncion, D. (2007). UCI machine learning repository. [online] Available at: http://archive.ics.uci.edu/ml/index.php.

  • Barmpoutis, A., & Ritter, G. (2006). Orthonormal basis lattice neural networks. In Proceedings of the IEEE International Conference on Fuzzy Systems, Vancouver, British Columbia, Canada (vol. 1, pp. 331–336).

    Google Scholar 

  • Broomhead, D., & Lowe, D. (1988a). Radial basis functions, multi-variable functional interpolation and adaptive networks. (Technical Report). RSRE. 4148.

    Google Scholar 

  • Broomhead, D., & Lowe, D. (1988b). Multivariable functional interpolation and adaptive networks. Complex Systems, 2(3), 321–355.

    MathSciNet  MATH  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20(3), 273–297.

    MATH  Google Scholar 

  • Guevara, E. (2016). Method for training morphological neural networks with dendritic processing. Ph.D. Thesis. Center for Computing Research. National Polytechnic Institute.

    Google Scholar 

  • Guang, G., Zhu, Q., & Siew, Ch. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1–3), 489–501.

    Google Scholar 

  • Huang, G., Huang, G., Song, S., & You, K. (2015). Trends in extreme learning machines: A review. Neural Networks, 61, 32–48.

    Article  Google Scholar 

  • McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

    Article  MathSciNet  Google Scholar 

  • Ojeda, L., Vega, R., Falcon, L., Sanchez-Ante, G., Sossa, H., & Antelis, J. (2015). Classification of hand movements from non-invasive brain signals using lattice neural networks with dendritic processing. In Proceedings of the 7th Mexican Conference on Pattern Recognition (MCPR) LNCS 9116, Springer Verlag (pp. 23–32).

    Google Scholar 

  • Ritter, G., & Beaver, T. (1999). Morphological perceptrons. In Proceedings of the International Joint Conference on Neural Networks (IJCNN). Washington, DC, USA (vol. 1, pp. 605–610).

    Google Scholar 

  • Ritter, G., Iancu, L., & Urcid, G. (2003). Morphological perceptrons with dendritic structure. In Proceedings of the 12th IEEE International Conference in Fuzzy Systems (FUZZ), Saint Louis, Missouri, USA (vol. 2, pp. 1296–1301).

    Google Scholar 

  • Ritter, G., & Schmalz, M. (2006). Learning in lattice neural networks that employ dendritic computing. In Proceedings of the 2006 IEEE International Conference on Fuzzy Systems(FUZZ), Vancouver, British Columbia, Canada (vol. 1, pp. 7–13).

    Google Scholar 

  • Ritter, G., & Urcid, G. (2007). Learning in lattice neural networks that employ dendritic computing. Computational Intelligence Based on Lattice Theory, 67, 25–44.

    Article  Google Scholar 

  • Ritter, G., Urcid, G., & Valdiviezo, J. (2014). Two lattice metrics dendritic computing for pattern recognition. In Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ), Beijing, China (pp. 45–52).

    Google Scholar 

  • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408.

    Article  Google Scholar 

  • Rosenblatt, F. (1962). Principles of neurodynamics: Perceptron and theory of brain mechanisms (1st ed.). Washington, DC, USA: Spartan Books.

    MATH  Google Scholar 

  • Sossa, H., & Guevara, E. (2013a). Modified dendrite morphological neural network applied to 3D object recognition. In Proceedings of the Mexican Conference on Pattern Recognition (MCPR), LNCS (vol. 7914, pp. 314–324).

    Google Scholar 

  • Sossa, H., & Guevara, E. (2013b). Modified dendrite morphological neural network applied to 3D object recognition on RGB-D data. In Proceedings of the 8th International Conference on Hybrid Artificial Intelligence Systems (HAIS), LNAI (vol. 8073, pp. 304–313).

    Google Scholar 

  • Sossa, H., & Guevara, E. (2014). Efficient training for dendrite morphological neural networks. Neurocomputing, 131, 132–142.

    Article  Google Scholar 

  • Sossa, H., Cortés, G., & Guevara, E. (2014). New radial basis function neural network architecture for pattern classification: First results. In Proceedings of the 19th Iberoamerican Congress on Pattern Recognition (CIARP), Puerto Vallarta, México, LNCS (vol. 8827, pp. 706–713).

    Google Scholar 

  • Sussner, P., & Esmi, E., (2009). An introduction to morphological perceptrons with competitive learning. In Proceedings of the 2009 International Joint Conference on Neural Networks (IJCNN), Atlanta, Georgia, USA (pp. 3024–3031).

    Google Scholar 

  • Sussner, P., & Esmi, E. (2011). Morphological perceptrons with competitive learning: Lattice-theoretical framework and constructive learning algorithm. Information Sciences, 181(10), 1929–1950.

    Article  MathSciNet  Google Scholar 

  • Vega, R., Guevara, E., Falcon, L., Sanchez, G., & Sossa, H. (2013). Blood vessel segmentation in retinal images using lattice neural networks. In Proceedings of the 12th Mexican International Conference on Artificial Intelligence (MICAI), LNAI (vol. 8265, pp. 529–540).

    Chapter  Google Scholar 

  • Vega, R., Sánchez, G., Falcón, L., Sossa, H., & Guevara, E. (2015). Retinal vessel extraction using lattice neural networks with dendritic processing. Computers in Biology and Medicine, 58, 20–30.

    Article  Google Scholar 

  • Zamora, E., & Sossa, H. (2016). Dendrite morphological neurons trained by stochastic gradient descent. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI 2016), Athens, Greece (pp. 1–8).

    Google Scholar 

  • Zamora, E., & Sossa, H. (2017). Dendrite morphological neurons trained by stochastic gradient descent. Neurocomputing, 260, 420–431.

    Article  Google Scholar 

Download references

Acknowledgements

E. Zamora and H. Sossa would like to acknowledge UPIITA-IPN and CIC-IPN for the support to carry out this research. This work was economically supported by SIP-IPN (grant numbers 20160945, 20170836 and 20161116, 20170693, 20180730, 20180180), and CONACYT (grant number 155014 (Basic Research) and grant number 65 (Frontiers of Science). F. Arce acknowledges CONACYT for the scholarship granted toward pursuing his PhD studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Sossa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sossa, H., Arce, F., Zamora, E., Guevara, E. (2018). Morphological Neural Networks with Dendritic Processing for Pattern Classification. In: Vergara Villegas, O., Nandayapa , M., Soto , I. (eds) Advanced Topics on Computer Vision, Control and Robotics in Mechatronics. Springer, Cham. https://doi.org/10.1007/978-3-319-77770-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77770-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77769-6

  • Online ISBN: 978-3-319-77770-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics