Skip to main content

Cognitive Robotics: The New Challenges in Artificial Intelligence

  • Chapter
  • First Online:
Advanced Topics on Computer Vision, Control and Robotics in Mechatronics

Abstract

Recent technological advances have provided the manufacturing industry with precise and robust machines that perform better than their human counterparts in tiresome and tedious jobs. Likewise, robots can perform high precision tasks including in hazardous environments. However, a new area of research in robotics has emerged in the last decades, namely cognitive robotics. The main interest in this area is the study of cognitive processes in humans and their implementation and modeling in artificial agents. In cognitive robotics, the use of robots as platforms, in the study of cognition, is the best-suited mechanism as they naturally interact with their environment and learn through this interaction. Following these ideas, in these works, two low-level cognitive tasks are modeled and implemented in an artificial agent. Based on the ecological framework of perception, in the first experiment, an agent learns its body map. In the second experiment, the agent acquires a distance-to-obstacles concept. The agent is let to interact with its environment and allowed to build multimodal representations of its surroundings, known as affordances. Internal models are proposed as a conceptual mechanism which performs associations between different modalities. The results presented here provide the basis for further research on the capabilities of internal models as a constituent cognitive base for higher capabilities in artificial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson, R., & Schank, R. (1977). Scripts, plans, goals and understanding (p. 10). New Jersey: An inquiry into human knowledge structures.

    MATH  Google Scholar 

  • Arkoudas, A. & Bringsjord, S. (2014). Philosophical foundations. In Frankish, K., & Ramsey, W. M. (Eds.), The Cambridge handbook of artificial intelligence (pp. 34–63). Cambridge University Press.

    Google Scholar 

  • Arleo, A., Smeraldi, F., & Gerstner, W. (2004). Cognitive navigation based on nonuniform gabor space sampling, unsupervised growing networks, and reinforcement learning. IEEE Transactions on Neural Networks, 15(3), 639–652.

    Article  Google Scholar 

  • Barsalou, L. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.

    Article  Google Scholar 

  • Barsalou, L. (2009). Simulation, situated conceptualization, and prediction. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1521), 1281–1289.

    Article  Google Scholar 

  • Blakemore, S., Goodbody, S., & Wolpert, D. (1998). Predicting the consequences of our own actions: The role of sensorimotor context estimation. The Journal of Neuroscience, 18(18), 7511–7518.

    Article  Google Scholar 

  • Braund, M. (2007). The indirect perception of distance: Interpretive complexities in berkeley’s. Kritike, 1, 49–64.

    Article  Google Scholar 

  • Brooks, R. (1990). Elephants don’t play chess. Robotics and autonomous systems, 6(1–2), 3–15.

    Article  Google Scholar 

  • Brooks, R. (1991a). Intelligence without reason. Artificial intelligence: critical concepts, 3, 107–163.

    MATH  Google Scholar 

  • Brooks, R. (1991b). Intelligence without representation. Artificial Intelligence, 47(1–3), 139–159.

    Article  Google Scholar 

  • Brown, J., O’Brien, C., Leung, S., Dumon, K., Lee, D., & Kuchenbecker, K. (2017). Using contact forces and robot arm accelerations to automatically rate surgeon skill at peg transfer. IEEE Transactions on Biomedical Engineering, 64(9), 2263–2275.

    Article  Google Scholar 

  • Chuy, O., Collins, E., Sharma, A., & Kopinsky, R. (2017). Using dynamics to consider torque constraints in manipulator planning with heavy loads. Journal of Dynamic Systems, Measurement, and Control, 139(5), 051001.

    Article  Google Scholar 

  • Collins, B., & Kornhauser, A. (2006). Stereo vision for obstacle detection in autonomous navigation. DARPA grand challenge Princeton university technical paper, 255–264.

    Google Scholar 

  • Devol, G. (1967). U.S. Patent No. 3,306,471. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Draghiciu, N., Burca, A., & Galasel, T. (2017). Improving production quality with the help of a robotic soldering arm. Journal of Computer Science and Control Systems, 10(1), 11.

    Google Scholar 

  • Escobar, E., Hermosillo, J., & Lara, B. (2012, November). Self body mapping in mobile robots using vision and forward models. In 2012 IEEE Ninth Electronics, Robotics and Automotive Mechanics Conference (CERMA), (pp. 72–77). IEEE.

    Google Scholar 

  • Escobar-Juárez, E., Schillaci, G., Hermosillo-Valadez, J., & Lara-Guzmán, B. (2016). a self-Organized internal Models architecture for coding sensory–Motor schemes. Frontiers in Robotics and AI, 3, 22.

    Article  Google Scholar 

  • Fodor, J. A. (1978). Tom Swift and his procedural grandmother. Cognition, 6(3), 229–247.

    Article  Google Scholar 

  • Gaona, W., Hermosillo, J., & Lara, B. (2012, November). Distance perception in mobile robots as an emergent consequence of visuo-motor cycles using forward models. In IEEE Ninth Electronics, Robotics and Automotive Mechanics Conference (CERMA), (pp. 42–47). IEEE.

    Google Scholar 

  • Gibson, J. (1979). The Ecological Approach to Visual Perception. Psychology Press.

    Google Scholar 

  • Graca, R., Xiao, D., & Cheng, S. (2016). U.S. Patent No. 9,227,322. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Harnad, S. (1989). Minds, machines and Searle. Journal of Experimental & Theoretical Artificial Intelligence, 1(1), 5–25.

    Article  Google Scholar 

  • Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1–3), 335–346.

    Article  Google Scholar 

  • Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge university press.

    Google Scholar 

  • Hasan, A., Hamzah, R., & Johar, M. (2009, November). Region of interest in disparity mapping for navigation of stereo vision autonomous guided vehicle. In International Conference on Computer Technology and Development, 2009. ICCTD’09, (Vol. 1, pp. 98–102). IEEE.

    Google Scholar 

  • Hoffmann, H. (2007). Perception through visuomotor anticipation in a mobile robot. Neural Networks, 20(1), 22–33.

    Article  Google Scholar 

  • Hoffmann, H., & Möller, R. (2004). Action selection and mental transformation based on a chain of forward models. From Animals to Animats, 8, 213–222.

    Google Scholar 

  • Jamone, L., Ugur, E., Cangelosi, A., Fadiga, L., Bernardino, A., Piater, J., & Santos-Victor, J. (2016). Affordances in psychology, neuroscience and robotics: a survey. IEEE Transactions on Cognitive and Developmental Systems.

    Google Scholar 

  • Johnson-Laird, P. (1977). Procedural semantics. Cognition, 5(3), 189–214.

    Article  Google Scholar 

  • Konolige, K. (1997). Small vision system. hardware and implementation. In proceedings international symposium on robotics research (pp. 111–116). ISRR.

    Google Scholar 

  • Lappin, J., Shelton, A., & Rieser, J. (2006). Environmental context influences visually perceived distance. Attention, Perception, & Psychophysics, 68(4), 571–581.

    Article  Google Scholar 

  • Lara, B., & Rendon, J. (2006, September). Prediction of undesired situations based on multi-modal representations. In Electronics, Robotics and Automotive Mechanics Conference, 2006 (vol. 1, pp. 131–136). IEEE.

    Google Scholar 

  • Lara, B., Rendon, J., & Capistran, M. (2007). Prediction of multi-modal sensory situations, a forward model approach. In Proceedings of the 4th IEEE Latin America Robotics Symposium (Vol. 1, pp. 504–542).

    Google Scholar 

  • Li, X., Wang, J., Choi, S., Li, R., Riveland, S., Landsnes, O., & Hara, M. (2016, June). Automatic Gyro Effect Simulation for Robotic Painting Application. In Proceedings of ISR 2016: 47st International Symposium on Robotics, (pp. 1–4). VDE.

    Google Scholar 

  • Lungarella, M., Metta, G., Pfeifer, R., & Sandini, G. (2003). Developmental robotics: A survey. Connection Science, 15(4), 151–190.

    Article  Google Scholar 

  • Miall, R., & Wolpert, D. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279.

    Article  Google Scholar 

  • Möller, R., & Schenck, W. (2008). Bootstrapping cognition from behavior—a computerized thought experiment. Cognitive Science, 32(3), 504–542.

    Article  Google Scholar 

  • Moons, T. (1998, June). A guided tour through multiview relations. In SMILE (Vol. 98, pp. 304–346).

    Chapter  Google Scholar 

  • Mortimer, J., & Rooks, B. (1987). Introduction. In The International Robot Industry Report (pp. 1–7). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Murarka, A., & Kuipers, B. (2009, October). A stereo vision based mapping algorithm for detecting inclines, drop-offs, and obstacles for safe local navigation. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on (pp. 1646–1653). IEEE.

    Google Scholar 

  • Pezzulo, G., & Cisek, P. (2016). Navigating the affordance landscape: feedback control as a process model of behavior and cognition. Trends in cognitive sciences, 20(6), 414–424.

    Article  Google Scholar 

  • Pfeifer, R., & Bongard, J. (2007). How the body shapes the way we think: A new view of intelligence. MIT press.

    Google Scholar 

  • Proffitt, D. (2006). Distance perception. Current Directions in Psychological Science, 15(3), 131–135.

    Article  Google Scholar 

  • Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In IEEE International Conference on Neural Networks, 1993, (pp. 586–591). IEEE.

    Google Scholar 

  • Rosen, J., Sekhar, L., Glozman, D., Miyasaka, M., Dosher, J., Dellon, et al. (2017, May). Roboscope: A flexible and bendable surgical robot for single portal Minimally Invasive Surgery. In IEEE International Conference on Robotics and Automation (ICRA), (pp. 2364–2370).

    Google Scholar 

  • Schillaci, G., Hafner, V., & Lara, B. (2016). Exploration behaviors, body representations, and simulation processes for the development of cognition in artificial agents. Frontiers in Robotics and AI, 3, 39.

    Google Scholar 

  • Searle, J. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3), 417–424.

    Article  Google Scholar 

  • Searle, J. (1990). Is the brain’s mind a computer program? Scientific American, 262(1), 26–31.

    Article  Google Scholar 

  • Thill, S., Caligiore, D., Borghi, A., Ziemke, T., & Baldassarre, G. (2013). Theories and computational models of affordance and mirror systems: An integrative review. Neuroscience and Biobehavioral Reviews, 37(3), 491–521.

    Article  Google Scholar 

  • Thrun, S., & Leonard, J. (2008). Simultaneous localization and mapping. In Springer handbook of robotics (pp. 871–889). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Tolman, E. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189.

    Article  Google Scholar 

  • Turing, A. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.

    Article  MathSciNet  Google Scholar 

  • Turvey, M. (2004). Space (and its perception): The first and final frontier. Ecological Psychology, 16(1), 25–29.

    Article  Google Scholar 

  • Warren, W., Jr., & Whang, S. (1987). Visual guidance of walking through apertures: body-scaled information for affordances. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 371.

    Google Scholar 

  • Weizenbaum, J. (1965). ELIZA—A computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36–45.

    Article  Google Scholar 

  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636.

    Article  Google Scholar 

  • Winograd, T. (1973). A procedural model of language understanding. In R. Schank & K. Colby (Eds.), Computer models of thought and language (pp. 152–186). San Francisco: W. H. Freeman.

    Google Scholar 

  • Wolpert, D., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3, 1212–1217.

    Article  Google Scholar 

  • Wolpert, D., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 358(1431), 593–602.

    Article  Google Scholar 

  • Wolpert, D., Ghahramani, Z., & Flanagan, J. R. (2001). Perspectives and problems in motor learning. Trends in cognitive sciences, 5(11), 487–494.

    Article  Google Scholar 

  • Wu, Y., Chen, H., Chen, Z., He, N., & Liu, B. (2016). Robotic sample preparation system based on magnetic separation. Journal of Nanoscience and Nanotechnology, 16(12), 12257–12262.

    Article  Google Scholar 

  • Zhuang, S., Lin, W., Zhong, J., Zhang, G., Li, L., Qiu, J., et al. (2018). Visual servoed three-dimensional rotation control in Zebrafish Larva heart microinjection system. IEEE Transactions on Biomedical Engineering, 65(1), 64–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Lara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lara, B., Ciria, A., Escobar, E., Gaona, W., Hermosillo, J. (2018). Cognitive Robotics: The New Challenges in Artificial Intelligence. In: Vergara Villegas, O., Nandayapa , M., Soto , I. (eds) Advanced Topics on Computer Vision, Control and Robotics in Mechatronics. Springer, Cham. https://doi.org/10.1007/978-3-319-77770-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77770-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77769-6

  • Online ISBN: 978-3-319-77770-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics