Skip to main content

Uncertainties for Thermoacoustics: A First Analysis

  • Chapter
  • First Online:
  • 1398 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 140))

Abstract

An Uncertainty Quantification analysis of a swirled stabilized combustor experiment is performed. The objective is to estimate the modal risk factor of the system, i.e. the probability of a thermoacoustic mode to be unstable, which may facilitate the development and optimization of suitable control methods. To propagate uncertainties, a Monte Carlo method is initially used based on 4000 Helmholtz-based thermoacoustic simulations with random perturbations on the flame input parameters. The analysis of the Monte Carlo database suggests that a reduced two-step Uncertainty Quantification strategy may be efficient to deal with thermoacoustic systems. First, three bilinear surrogate models are tuned from a moderate number of Helmholtz solutions (a few tens). Then, these algebraic models are used to perform a Monte Carlo analysis at reduced cost and approximate the risk factor of the mode. Good agreements are obtained when comparing the risk factor from the full Monte Carlo database and the risk factor from surrogate models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Putnam, A.A.: American Elsevier (1971)

    Google Scholar 

  2. Dowling, A.P., Stow, S.R.: J. Prop. Power 19, 751–764 (2003)

    Article  Google Scholar 

  3. Culick, F.E.C.: AGARD 72B PEP meeting

    Google Scholar 

  4. Lieuwen, T., Torres, H., Johnson, C., Zinn, B.: J. Eng. Gas Turbines Power 123, 182–189 (2001)

    Article  Google Scholar 

  5. Lieuwen, T., Banaszuk, A.: J. Prop. Power 21, 25–31 (2005)

    Article  Google Scholar 

  6. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn. www.cerfacs.fr/elearning (2011)

  7. Rayleigh, L.: Nature July 18 (1878) 319–321

    Google Scholar 

  8. Wolf, P., Staffelbach, G., Gicquel, L., Muller, J.-D., Poinsot, T.: Combust. Flame 159, 3398–3413 (2012)

    Article  Google Scholar 

  9. Staffelbach, G., Gicquel, L., Poinsot, T.: Lecture Notes in Computational Science and Engineering. In: Complex effects in Large Eddy Simulation, vol. 56, pp. 326–336. Springer

    Google Scholar 

  10. Schmitt, P., Poinsot, T., Schuermans, B., Geigle, K.P.: J. Fluid Mech. 570, 17–46 (2007)

    Article  Google Scholar 

  11. Motheau, S.: NICOUD, J. Sound Vib. 1–26 (2012)

    Google Scholar 

  12. Bauerheim, M., Cazalens, M., Poinsot, T.: Proc. Combust, Inst (2014)

    Google Scholar 

  13. Bauerheim, M., Parmentier, J., Salas, P., Nicoud, F., Poinsot, T.: Combust. Flame 1374–1389 (2014)

    Google Scholar 

  14. Bauerheim, M., Ndiaye, A., Magri, L., Moreau, S., Poinsot, T., Nicoud, F.: J. Fluid Mech. (2016)

    Google Scholar 

  15. Nicoud, F., Benoit, L., Sensiau, C., Poinsot, T.: AIAA J. 45, 426–441 (2007)

    Article  Google Scholar 

  16. Crocco, L.: J. Am. Rocket Soc. 21, 163–178 (1951)

    Article  Google Scholar 

  17. Crocco, L.: J. Am. Rocket Soc. 22, 7–16 (1952)

    Article  Google Scholar 

  18. Palies, P., Durox, D., Schuller, T., Candel, S.: Combust. Flame 157, 1698–1717 (2010)

    Article  Google Scholar 

  19. Schuller, T., Durox, D., Candel, S.: Combust. Flame 134, 21–34 (2003)

    Article  Google Scholar 

  20. Giauque, A., Selle, L., Poinsot, T., Buechner, H., Kaufmann, P., Krebs, W.: J. Turb. 6, 1–20 (2005)

    Article  Google Scholar 

  21. Palies, P.: Dynamique et instabilités de combustion de flammes swirlées. Ph.D. Thesis, Ecole Centrale Paris (2010)

    Google Scholar 

  22. Schuller, T., Durox, D., Palies, P., Candel, S.: Combust. Flame 159, 1921–1931 (2012)

    Article  Google Scholar 

  23. Silva, C.F., Nicoud, F., Schuller, T., Durox, D., Candel, S.: Combust. Flame 160, 1743–1754 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed within the UMRIDA project funded by the European Commission (FP7-AAT-2013-RTD-1-605036). The authors also thank the Center for Turbulence Research for its support during the 2014 Summer Program. Professor G. Iaccarino (Stanford University) and P. Constantine (UMINES Colorado) are acknowledged for their help regarding the UQ strategy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Nicoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ndiaye, A., Nicoud, F. (2019). Uncertainties for Thermoacoustics: A First Analysis. In: Hirsch, C., Wunsch, D., Szumbarski, J., Łaniewski-Wołłk, Ł., Pons-Prats, J. (eds) Uncertainty Management for Robust Industrial Design in Aeronautics . Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-77767-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77767-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77766-5

  • Online ISBN: 978-3-319-77767-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics