Skip to main content

Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates

  • Chapter
  • First Online:
  • 1425 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 140))

Abstract

The lack of an universal modelling approach for turbulence in Reynolds-Averaged Navier–Stokes simulations creates the need for quantifying the modelling error without additional validation data. Bayesian Model-Scenario Averaging (BMSA), which exploits the variability on model closure coefficients across several flow scenarios and multiple models, gives a stochastic, a posteriori estimate of a quantity of interest. The full BMSA requires the propagation of the posterior probability distribution of the closure coefficients through a CFD code, which makes the approach infeasible for industrial relevant flow cases. By using maximum a posteriori (MAP) estimates on the posterior distribution, we drastically reduce the computational costs. The approach is applied to turbulent flow in a pipe at \(Re=\) 44,000 over 2D periodic hills at \(Re_H=5600\), and finally over a generic falcon jet test case (Industrial challenge IC-03 of the UMRIDA project).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The MAP estimates are available online at [11].

  2. 2.

    The template-cases for each turbulence model are available on GitHub: https://github.com/shmlzr/UQOpenFOAM.

  3. 3.

    Underlying flow regime 3–30, 2D Periodic Hill Flow: http://qnet-ercoftac.cfms.org.uk.

References

  1. Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)

    Google Scholar 

  2. Slotnick, J., Khodadoust, A.: CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences. Technical report, NASA—National Aeronautics and Space Administration, Langley Research Center Hampton, Virginia 23681–2199 (2014)

    Google Scholar 

  3. Edeling, W.N., Cinnella, P., Dwight, R.P., Bijl, H.: Bayesian estimates of parameter variability in the k-epsilon turbulence model. J. Comput. Phys. 258, 73–94 (2014)

    Article  MathSciNet  Google Scholar 

  4. Edeling, W.N., Cinnella, P., Dwight, R.P.: Predictive RANS simulations via bayesian model-scenario averaging. J. Comput. Phys. 275, 65–91 (2014)

    Google Scholar 

  5. Edeling, W.N.: Quantification of modelling uncertainties in turbulent flow simulations. PhD thesis, Technical University Delft, Aerospace Department (2015)

    Google Scholar 

  6. Edeling, W.N., Schmelzer, M., Dwight, R.P., Cinnella, P.: Bayesian predictions of reynolds-averaged Navier–Stokes uncertainties using maximum a posteriori estimates. AIAA J. (Article in Advance) (2018)

    Google Scholar 

  7. Coles, D., Hirst, E.: Computation of turbulent boundary layers. In: Proceedings of AFOSR-IFP Stanford Conference, vol. 2 (1968)

    Google Scholar 

  8. Cheung, S.H., Oliver, T.A., Prudencio, E.E., Prudhomme, S., Moser, R.D.: Bayesian uncertainty analysis with applications to turbulence modeling. Reliab. Eng. Syst. Safety 96(9), 1137–1149 (2011)

    Article  Google Scholar 

  9. Gelman, A., Carlin, J., Stern, H., Rubin, D.: Bayesian data analysis, vol. 2. Chapman & Hall/CRC Boca Raton, FL, USA (2014)

    MATH  Google Scholar 

  10. Hastings, W.K.: Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  11. Edeling, W.N., Cinnella, P., Dwight, R.: MCMC Traces of Posterior Distributions of Closure Coefficients for 6 Turbulence Models [online database]. https://www.researchgate.net/publication/308609583_MCMC_traces_of_posterior_distributions_of_closure_coefficients_for_6_turbulence_models_ASCII_format (2016). Accessed 25 Sept 2016

  12. Wu, X., Moin, P.: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81–112 (2008)

    Article  Google Scholar 

  13. Venkateshan, S.: Mechanical Measurements. 2 edn. Wiley (2015)

    Google Scholar 

  14. OpenFOAM: OpenFOAM User Guide. OpenFOAM Foundation (Feb 2014)

    Google Scholar 

  15. Breuer, M., Peller, N., Rapp, C., Manhart, M.: Flow over periodic hills—numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38(2), 433–457 (2009)

    Article  Google Scholar 

  16. Manceau, R.: Report on the 10th joint ERCOFTAC (SIG-15)/ IAHR / QNET-CFD Workshop on Refined Turbulence Modelling. ERCOFTAC Series 57 (2002)

    Google Scholar 

  17. Jakirlic, S.: Extended Excerpt Related to the Test Case: Flow Over a Periodical Arrangement of 2D Hills. Technical Report June (2012)

    Google Scholar 

Download references

Acknowledgements

We thank Dassault Aviation and especially Gilbert Roge for the collaboration on the test case of the generic falcon jet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schmelzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmelzer, M., Dwight, R.P., Edeling, W., Cinnella, P. (2019). Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates. In: Hirsch, C., Wunsch, D., Szumbarski, J., Łaniewski-Wołłk, Ł., Pons-Prats, J. (eds) Uncertainty Management for Robust Industrial Design in Aeronautics . Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-77767-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77767-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77766-5

  • Online ISBN: 978-3-319-77767-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics