Skip to main content

Thermodynamics of Binary Solid–Fluid Cosserat Mixtures

  • Chapter
  • First Online:
Fluid and Thermodynamics

Abstract

It is demonstrated in this chapter, how complex it is to deduce a saturated binary solid–fluid Cosserat mixture model that is in conformity with the second law of thermodynamics and sufficiently detailed to be ready for application in fluid dynamics. The second law is formulated for open systems using the ClausiusDuhem inequality without mass and energy production under phase change for class II mixtures of elastic solids and viscoelastic fluids. It turns out that even with all these restrictions the detailed exploitation of the entropy inequality is a rather involved endeavor. Inferences pertain to extensive functional restrictions of the fluid- and solid- free energies and allow determination of the constitutive quantities in terms of the latter in thermodynamic equilibrium and small deviations from it. The theory is presented for four models of compressible–incompressible fluid–solid constituents. Finally, explicit representations are given for the free energies and for the constitutive quantities that are obtained from them via differentiation processes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a brief biographical sketch of Bernard D. Coleman (1930–2018), see Fig.  24.1 .

  2. 2.

    For a brief biographical sketch of Walter Noll (1925–2017), see Fig.  24.2 .

  3. 3.

    For brief biographies of

    • Rudolf Julius Emanuel Clausius , see Fig. 17.8, Vol. 2 of this treatise, p. 330 [42];

    • Pierre Maurice Marie Duhem , see Fig. 17.16, Vol. 2 of this treatise, p. 343 [42];

    • Walter Noll, see [43];

    • Clifford Ambrose Truesdell , see Fig. 22.1, this volume, p. 40.

  4. 4.

    A separate thermodynamic formulation on granular-fluid continua will be given in Chap. 30.

  5. 5.

    Hydrophilic polymers swell under water (vapor) adsorption.

  6. 6.

    In the formulae (24.120)–(24.123), a subscript \((\cdot )_1\) has been introduced to identify that the so subscripted quantities are based on the rule of phase separation rather than the rule of aequipresence.

  7. 7.

    In the most general case of (24.129) the g-functions are fourth-order tensors over \({\mathbb R}^{3}\). Here, by assuming the simplest representation of isotropy, they are merely scalars.

  8. 8.

    See e.g., [40], Chap. 1, homework 8, p. 43.

  9. 9.

    Pertinent early memoirs are as well by Eringen [28, 29], Grioli [38, 39], Mindlin and Tiersten [50], Neuber [54], Schäfer [63,64,65], Smith [69, 70], Soos [71, 72], Toupin [76], Wozniak [82], Wyrwinski [83], and many others, see e.g., [58].

  10. 10.

    A detailed explanation of these arguments is given in Vol. 2 Chap. 18 ‘Thermodynamics – Field Formulation’ of this treatise [42].

  11. 11.

    This means, constitutive equations are invariant with respect to arbitrary rotations.

  12. 12.

    Alternatively, (24.178) and (24.179) can also be formulated for the right CauchyGreen deformation tensor \({\varvec{C}}={\varvec{F}}^{T}{\varvec{F}}\) ; the eigenvalues \(\lambda _{i}\) \((i=1,2,3)\) are the same for \(\sqrt{\varvec{C}}\) as for \(\sqrt{{\varvec{B}}}\), see e.g., [40].

  13. 13.

    The representation (24.186), (24.187) as quadratic polynomial tensor relations of \({\varvec{I}}, {\varvec{B}}, {\varvec{B}}{\varvec{B}}\) is a consequence of the CayleyHamilton theorem for any smooth function.

  14. 14.

    To prove this, take the trace of the term \(\{\cdot \}\) in the first curly brackets of (24.188). This yields

    $$\begin{aligned} I\!I_{\hat{{\varvec{B}}}} \frac{\partial \,\hat{W}}{\partial \,I\!I_{\hat{{\varvec{B}}}}} - I_{\hat{{\varvec{B}}}}\frac{\partial \,\hat{W}}{\partial \,I_{\hat{{\varvec{B}}}}} + \frac{1}{I\!I\!I_{\hat{\varvec{B}}}^{1/3}}\frac{\partial \,\hat{W}}{\partial \,I_{\hat{\varvec{B}}}}I_{{\varvec{B}}} -I\!I\!I_{\hat{\varvec{B}}}^{1/3} \frac{\partial \,\hat{W}}{\partial \,I\!I_{\hat{\varvec{B}}}}I_{{\varvec{B}}^{-1}} {\mathop {=}\limits ^{\mathrm {def.}}} {\mathfrak Q}. \end{aligned}$$

    Owing to (24.181)\(_{1}\), the second and third term of this expression cancel each other. To conclude the same for the remaining terms, \(I_{{\varvec{B}}^{-1}}\) must be expressed in terms of the invariants of \({\varvec{B}}\). This follows from the CayleyHamilton theorem

    $$\begin{aligned} {\varvec{B}}^{3} - I_{{\varvec{B}}}{\varvec{B}}^{2} + I\!I_{{\varvec{B}}}{\varvec{B}} - I\!I\!I_{\varvec{B}}{\varvec{I}} \equiv 0, \end{aligned}$$

    from which one easily deduces

    $$\begin{aligned}&{\varvec{B}}^{2} - I_{{\varvec{B}}}{\varvec{B}}+ I\!I_{\varvec{B}}{\varvec{I}} - I\!I\!I_{\varvec{B}}{\varvec{B}}^{-1} = 0 ,\\&\Longrightarrow \quad&{\varvec{B}}^{-1} = \frac{1}{I\!I\!I_{{\varvec{B}}}}{\varvec{B}}^{2} - \frac{I_{{\varvec{B}}}}{I\!I\!I_{{\varvec{B}}}}{\varvec{B}} + \frac{I\!I_{{\varvec{B}}}}{I\!I\!I_{{\varvec{B}}}}{\varvec{I}}. \end{aligned}$$

    Forming the trace of this equation yields

    $$\begin{aligned} \mathrm {tr}{\varvec{B}}^{-1} \equiv I_{{\varvec{B}}^{-1}} = \frac{1}{I\!I\!I_{{\varvec{B}}}}\left\{ \underbrace{ I_{{\varvec{B}}^{2}} - (I_{\varvec{B}})^{2}}_{ - 2I\!I_{{\varvec{B}}} } +3I\!I_{{\varvec{B}}} \right\} = \frac{I\!I_{{\varvec{B}}}}{I\!I\!I_{{\varvec{B}}}} {\mathop {=}\limits ^{(24.181)_{2}}} I\!I_{\hat{{\varvec{B}}}}I\!I\!I_{{\varvec{B}}}^{-1/3}, \end{aligned}$$

    which proves now that \({\mathfrak Q} = 0\).

  15. 15.

    In [16] also a condition on \(\hat{W}\) is stated from which the shear modulus follows, but that condition does not affect U.

  16. 16.

    This latter condition is not satisfied by the free energy function (24.199).

References

  1. Bluhm, J.: A model for liquid saturated compressible porous solids. In: Walther, W. (ed.) Beiträge zur Mechanik (Festschrift zum 60. Geburtstag von Prof. Dr.-Ing. Reint de Boer). Forschunsbericht aus dem Fachbereich Bauwesen, vol. 66, pp. 41–50. Unitversität-GH-Essen (1995)

    Google Scholar 

  2. Bluhm, J.: A consistent model for saturated and empty porous media. Forschunsberichte aus dem Fachbereich Bauwesen, vol. 74. Universität-GH-Essen (1997)

    Google Scholar 

  3. Bluhm, J.: Zur Berücksichtigung der Kompressibilität des Festkörpers bei porösen Materialien. Zeitschrift Angew. Math. Mech (ZAMM) 77, 39–40 (1997)

    Google Scholar 

  4. Bowen, R.: The thermochemistry of a reacting mixture of elastic materials with diffusion. Arch. Rational Mech. Anal. 34, 97–127 (1969)

    Article  Google Scholar 

  5. Bowen, R.: Theory of mixtures. In: Eringen, C.A. (ed.) Continuum Physics, vol. III, pp. 1–127. Academic Press, New York (1976)

    Google Scholar 

  6. Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)

    Article  Google Scholar 

  7. Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics. Vol III – Mixtures and EM-Field Theories, pp. 1–127. Academic Press, New York (1980)

    Google Scholar 

  8. Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)

    Google Scholar 

  9. Ciarlet, P.G.: Mathematical Elasticity. Vol. 1 Three Dimensional Elasticity. North Holland, Amsterdam (1988)

    Google Scholar 

  10. Coleman, B.D., Noll, W.: The thermodynamics of materials with memory. Arch Rational Mech. Anal. 17, 1–46 (1964)

    Article  Google Scholar 

  11. de Borst, R.: Numerical modelling of bifurcation and localization in cohesive-frictional materials. Pageoph 137, 368–390 (1991)

    Article  Google Scholar 

  12. de Boer, R., Ehlers, W.: Theorie der Mehrkomponenten Kontinua mit Anwendung auf bodenmechanische Probleme, Teil 1. Forschungsbericht aus dem Fachbereich Bauwesen, vol. 40. Universität-GH-Essen (1986)

    Google Scholar 

  13. Diebels, S.: Mikropolare Zweiphasenmodelle: Formulierung auf der Basis der Theorie Poröser Medien. Bericht Nr. II-4 aus dem Institut für Mechanik (Bauwesen) Lehrstuhl II, p. 188. Universität Stuttgart (2000)

    Google Scholar 

  14. Diebels, S., Ehlers, W.: Dynamic analysis of a fully saturated porous medium accounting for geometrical and material nonlinearities. Int. J. Numer. Methods Eng. 39, 81–97 (1996)

    Article  Google Scholar 

  15. Diebels, S., Ehlers, W.: On basic equations of multiphase micropolar materials. Technische Mechanik 16, 77–88 (1996)

    Google Scholar 

  16. Doll, S., Schweizerhof, K.: On the development of volumetric strain energy functions. Report: Institut für Mechanik, Universität Karlsruhe, Deutschland (1999). ifm@uni-jkarlsruhe.de

    Google Scholar 

  17. Duhem, P.: Le Potentiel Thermodynamique et ses Applications. A. Hermann, Librairie Scientifique, Paris (1886)

    Google Scholar 

  18. Ehlers, W.: Poröse Medien – Ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Habilitationsschrift, Forschungsbericht aus dem Fachbereich Bauwesen, vol. 45, p. 332. Universität-GH-Essen (1989)

    Google Scholar 

  19. Ehlers, W.: Compressible, incompressible and hybrid two-phase models in porous media theories. In: Angel, Y.C. (ed.) Anisotropy and Inhomogeneity in Elasticity and Plasticity, ADM-Vol. 158, pp. 25–38. ASME, New York (1993)

    Google Scholar 

  20. Ehlers, W.: Constitutive equations for granular materials in geomechanical context. In: Hutter, K. (ed.) Continuum Mechanics in Environmental Sciences and Geophysics. CISM Courses and Lectures, vol. 337, pp. 313–402. Springer, Wien (1993)

    Google Scholar 

  21. Ehlers, W., Eipper, G.: Finite Elastizität bei fluidgesättigten hoch porösen Festkörpern. J. Appl. Math. Mech. (ZAMM) 77, 79–80 (1997)

    Google Scholar 

  22. Ehlers, W., Eipper, G.: The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mech. 130, 17–17 (1998)

    Article  Google Scholar 

  23. Ehlers, W., Eipper, G.: Finite elastic deformations in liquid-saturated and empty porous solids. Transp. Porous Media 34, 179–191 (1999)

    Article  Google Scholar 

  24. Ehlers, W., Volk, W.: On the shear band localization phenomena induced by elasto-plastic consolidation of fluid-saturated soils. In: Oden, D.J.R., O\(\tilde{\rm n}\)ate, E., Hilton, E. (eds.) Computational Plasticity – Fundamentals and Applications, vol. 2, pp. 1657–1664. CIMNE, Barcelona (1997)

    Google Scholar 

  25. Ehlers, W., Volk, W.: On shear-band localization phenomena of liquid-saturated granular elasto-plastic solid materials accounting for fluid viscosity and micropolar solid rotations. Mech. Cohesive-Frict. Mater. 2, 301–320 (1997)

    Article  Google Scholar 

  26. Ehlers, W., Volk, W.: On theoretical and numerical methods of the theory of porous media based on polar and non-polar materials. Int. J. Solids Struct. 35, 4597–4617 (1998)

    Article  Google Scholar 

  27. Eipper, G.: Theorie und Numerik finiter elastischer Deformationen in fluid-gesättigten porösenFestkörpern. Ph.D. thesis, Bericht Nr. II-1, Institut für Mechanik (Bauwesen), Lehrstuhl 2. Universität Stuttgart (1998)

    Google Scholar 

  28. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909 (1966)

    Google Scholar 

  29. Eringen, A.C.: Theory of Micropolar Elasticity. Fracture, vol. II. Academic Press, New York (1968)

    Google Scholar 

  30. Eringen, C.A., Suhubi, D.G.B.: Nonlinear theory of simple microelastic solids. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  Google Scholar 

  31. Fang, C., Wang, Y., Hutter, K.: A thermomechanical continuum theory with internal length for cohesionless granular materials. Part I & Part II. Contin. Mech. Thermodyn. 17, 545–576 and 577–607 (2006)

    Google Scholar 

  32. Flory, J.P.: Principles of Polymer Chemistry. Cornell University Press (1953). ISBN 0-8014-0134-8

    Google Scholar 

  33. Flory, J.P.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  Google Scholar 

  34. Flory, J.P.: Statistical Mechanics of Chain Molecules. Interscience. ISBN 0-470-26495-0 (1969), ISBN 1-56990-019-1 Reissued (1989)

    Google Scholar 

  35. Flory, J.P.: Selected Works of Paul J. Flory. Stanford University Press (1985). ISBN 0-8047-1277-8

    Google Scholar 

  36. Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Arch. Rational Mech. Anal. 44, 249–266 (1972)

    Article  Google Scholar 

  37. Green, A.E., Zerna, W.: Theoretical Elasticity. Clarendon Press, London (1954)

    Google Scholar 

  38. Grioli, G.: Elasticità asimmetrica. Annali di Mat Pura e Applicata 4(4), 389 (1960)

    Article  Google Scholar 

  39. Grioli, G.: On the thermodynamic potential for continuum with reversible transformations – some possible types. Meccanica 1(1, 2), 15 (1966)

    Google Scholar 

  40. Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling, p. 635. Springer, Berlin (2004)

    Book  Google Scholar 

  41. Hutter, K., Wang, Y.: Fluid and Thermodynamics. Volume 1: Basic Fluid Mechanics. Springer, Berlin (2016). ISBN: 978-3319336329, 639 p

    Google Scholar 

  42. Hutter, K., Wang, Y.: Fluid and Thermodynamics. Volume II: Advanced Fluid Mechanics and Thermodynamic Fundamentals. Springer, Berlin (2016). ISBN: 978-3-319-33635-0, 633 p

    Google Scholar 

  43. Ignatieff, Y.A.: The Mathematical World of Walter Noll, A Scientific Biography. Springer, Berlin (1996). https://doi.org/10.1007/978-3-642-79833-7

  44. Kaliske, M., Rothert, H.: On the finite element implication of rubber-like materials at finite strains. Eng. Comput. 14, 216–232 (1997)

    Article  Google Scholar 

  45. Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)

    Article  Google Scholar 

  46. Liu, C.H., Mang, H.A.: A critical assessment of volumetric strain energy functions for hyperelasticity at large strains. J. Appl. Math. Mech. (ZAMM) 76(S5), 305–306 (1996)

    Google Scholar 

  47. Martin, M.: Asymptotic equipartition of energies in thermoelasticity of dipolar bodies. In: Brillard, A., Ganghoffer, J.F. (eds.) Proceedings of the EUROMECH Colloquium 378: Nonlocal Aspects in Solid Mechanics, pp. 77–82. University of Mulhouse, Mulhouse, France (1998)

    Google Scholar 

  48. Martinez, F., Quintanilla, R.: Existence and uniqueness of solutions in micropolar viscoelastic bodies. In: Brillard, A., Ganghoffer, J.F. (eds.) Proceedings of the EUROMECH Colloquium 378: Nonlocal Aspects in Solid Mechanics, pp. 83–87. University of Mulhouse, Mulhouse, France (1998)

    Google Scholar 

  49. Miehe, C.: Aspects of the formulation and implementation of large strain isotropic elasticity. Int. J. Numer. Methods Eng. 37, 1998–2004 (1994)

    Article  Google Scholar 

  50. Mindlin, R.D., Tiersten, H.F.: Effects of couple stresses in linear elasticity. Arch. Rational Mech. Anal. 11(5), 415 (1962)

    Article  Google Scholar 

  51. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)

    Article  Google Scholar 

  52. Müller, I.: A thermodynamic theory of mixtures of fluids. Arch. Rational Mech. Anal. 28, 1–39 (1968)

    Article  Google Scholar 

  53. Neff, P.: A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44, 574–595 (2006)

    Article  Google Scholar 

  54. Neuber, H.: On the general solution of linear elastic problem in anisotropic and isotropic Cosserat continua. In: Proceedings of the XI International Congress of Applied Mechanics, München, vol. 1964, p. 153 (1966)

    Google Scholar 

  55. Noll, W.: Foundations of Mechanics and Thermodynamics, Selected Papers. Springer, New York (1974). ISBN 0-387-06646-2

    Google Scholar 

  56. Noll, W.: Five contributions to natural philosophy. Published on Professor Noll’s website (2004). http://repository.cmu.edu/cgi/viewcontent.cgi?article=1008&context=math

  57. Nowacki, W.: Couple-stresses in the theory of thermoelaticity. I. Bull. Acad. Polon. Sci. Sér. Sci. Tech. I, 14, 97; II, 14, 293; III, 14 (1966)

    Google Scholar 

  58. Nowacki, W.: Theory of Micropolar Elasticity. International Centre of Mechanical Sciences, Course Nr 25, Udine. Springer, Wien, p. 283 (1970)

    Google Scholar 

  59. Ogden, R.W.: Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solid solids. Proc. R. Soc. Lond. A328, 567–583 (1972)

    Article  Google Scholar 

  60. Passman, S.L., Nunziato, J.W., Walsh, E.K.: A theory of multiphase mixtures. In: Truesdell, C. (ed.) Rational Thermodynamics, 2nd edn, pp. 286–325. Springer, Berlin (1984)

    Chapter  Google Scholar 

  61. Penn, R.W.: Volume changes accompanying the extension of rubber. Trans. Soc. Rheol. 14(4), 509–517 (1970)

    Article  Google Scholar 

  62. Rivlin, R.S.: Large elastic deformations of isotropic materials: I fundamental concepts. Proc. R. Soc. Lond. A240, 459–490 (1948)

    Google Scholar 

  63. Schäfer, H.: Die Spannungsfunktionen des dreidimensionalen Kontinuums und des elastischen Körpers. ZAMM 33, 356 (1953)

    Article  Google Scholar 

  64. Schäfer, H.: Die Spannungsfunktionen des dreidimensionalen Kontinuums; statische Deutung und Randwerte. Ing. Arch. 18, 291 (1959)

    Article  Google Scholar 

  65. Schäfer, H.: Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums. Misszellanien der angew. Mechanik, Festschrift W. Tollmien, p. 277 (1962)

    Google Scholar 

  66. Simo, J.C., Pister, K.S.: Remarks on rate constitutive equations for finite deformation. Comput. Methods Appl. Mech. Eng. 46, 201–215 (1984)

    Article  Google Scholar 

  67. Simo, J.C., Taylor, R.L.: Penalty function formulations for incompressible nonlinear elastostatics. Comput. Methods Appl. Mech. Eng. 35, 107–118 (1982)

    Article  Google Scholar 

  68. Simo, J.C., Taylor, R.L.: Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput. Methods Appl. Mech. Eng. 85, 273–310 (1991)

    Article  Google Scholar 

  69. Smith, A.C.: Deformations of micropolar elastic solids. Int. J. Eng. Sci. 5(8), 637 (1967)

    Google Scholar 

  70. Smith, A.C.: Waves in micropolar elastics. Int. J. Eng. Sci. 5(10), 741 (1967)

    Google Scholar 

  71. Soos, E.: Some applications of the theorem on reciprocity for an elastic and thermoelastic material with microstructure. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 16(11/12), 541 (1968)

    Google Scholar 

  72. Soos, E.: Uniqueness theorem for homogeneous, isotropic simple elastic and thermoelastic material having a microstructure. Int. J. Eng. Sci. 7(3), 257 (1969)

    Article  Google Scholar 

  73. Suhubi, E.S., Eringen, A.C.: Non-linear theory of simple microelastic solids II. Int. J. Eng. Sci. 2, 389–404 (1964)

    Article  Google Scholar 

  74. Tanner, R.I., Walters, K.: Rheology. An Historical Perspective, vol. 7, p. 254. Elsevier Science, Amsterdam (1998). ISBN 9780444829467

    Google Scholar 

  75. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Rational Mech. Anal. 11(5), 385 (1962)

    Article  Google Scholar 

  76. Toupin, R.A.: Theories of elasticity with couple stresses. Arch. Rational Mech. Anal. 17(2), 85 (1964)

    Article  Google Scholar 

  77. Truesdell, C.A.: Sulle basi della termomeccanica. Rend. Lincei. 22(8), 33–38, 156–166 (1957)

    Google Scholar 

  78. Truesdell, C.A., Noll, W.: The nonlinear field theories of mechanics. Encyclopedia of Physics, vol. III/3. Springer, Berlin (1965). ISBN 3-540-02779-3, amended and actualized third edition by S. Antman (2004)

    Google Scholar 

  79. van den Bogert, P.A.J., de Borst, R.: Constitutive aspects and finite element analysis of 3-d rubber specimens in compression and shear. In: Panda, G.N., Middleton, J. (eds.) NUMETA 90: Numerical Methods in Engineering: Theory and Applications, pp. 870–877. Elsevier Applied Science, Swansea (1990)

    Google Scholar 

  80. Volk, W.: Untersuchung des Lokalisierungsverhaltens mikropolarer poröser - Medien mit Hilfe der Cosserat Theorie. Bericht Nr. II-2 aus dem Institut für Mechanik (Bauwesen) Lehrstuhl II, Universität Stuttgart, p. 141 (1999)

    Google Scholar 

  81. Wilmanski, K.: Thermomechanics of Contonua. Springer, Berlin (1998), 273 p

    Google Scholar 

  82. Wozniak, C.: Thermoelasticity of non-simple continuous media with internal degrees of freedom. Int. J. Eng. Sci. 5(8), 605 (1967)

    Article  Google Scholar 

  83. Wyrwinski, J.: Green functions for a thermoelastic Cosserat medium. Bull. De l’ acad. Pol. Sci. Sér. Sci. Tech. 14, 145 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolumban Hutter .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hutter, K., Wang, Y. (2018). Thermodynamics of Binary Solid–Fluid Cosserat Mixtures. In: Fluid and Thermodynamics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-77745-0_24

Download citation

Publish with us

Policies and ethics