Skip to main content

Pliocene-Pleistocene Sedimentation

  • Chapter
  • First Online:
Geologic Structures of the Arctic Basin

Abstract

Paleomagnetic data, including the recent high-quality measurements, estimate the average mean sedimentation rate in the Mendeleev Ridge for the last 4 Ma as 1–1.5 mm/kyr, rising slightly towards the shelf seas of northeast Russia. The rates also increase towards the Lomonosov Ridge: in its near-Greenland sector, the Brunhes/Matuyama transition was identified in the sediment core at 330 cmbsf, giving rates of 4.4 mm/kyr for the Brunhes chron.

Recently established presence of volcanic material in bottom sediments indicates active, at times even catastrophic, the Pleistocene volcanic activity in the Arctic Basin. It could be safe to state that the Eurasian Basin in the Arctic Ocean was a scene for at least one such a powerful volcanic eruption with huge volumes of ejected material at ~1.1 Ma.

The study of hydrocarbon molecular markers and the Late Cenozoic sedimentation in the Amerasian continental margin allowed to examine the importance of different processes (terrigeneous denudation, glacial transport, turbidites, oceanic slope contouring currents, submarine erosion, and bedrock material re-deposition) in accumulation of the sedimentary cover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler RA, Polyak L, Ortiz JD et al (2009) Sediments record from the western Arctic Ocean with an improvement late quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev ridge. Glob Planet Chang J 68:18–29

    Article  Google Scholar 

  • Andreeva IA, Basov VA, Kupriyanova NV, Shilov VV (2007) Age and depositional environment of bottom sediments in the Mendeleev Rise (Arctic Ocean). Materials on the polar regions and the central part of the mid-Atlantic ridge in the Phanerozoic. Fauna, flora and biostratigraphy, vol 211. VNIIOkeangeologia, pp 131–152

    Google Scholar 

  • Backman J, Moran K (2009) Expanding the Cenozoic paleoceanographic record in the Central Arctic Ocean : IODP Expedition 302 Synthesis. Cen Euro J Geosci 1(2):157–175

    Google Scholar 

  • Backman J, Jakobsson M, Lovlie R et al (2004) Is the Central Arctic Ocean a sediment starved basin? Quat Sci Rev J 23:1435–1454

    Article  Google Scholar 

  • Bastow TP, Singh RK, van Aarssen BG et al (2001) 2-Methylretene in sedimentary material: a new higher plant biomarker. Org Geochem J 32:1211–1217

    Article  Google Scholar 

  • Brozena JM, Childers VA, Lawver LA et al (2003) New aerogeophysical study of the Eurasia Basin and Lomonosov ridge: implications for basin development. Geol J 31(9):825–828

    Article  Google Scholar 

  • Bruvoll V, Kristoffersen Y, Coakley B et al (2012) The nature of the acoustic basement on Mendeleev and northwestern alpha ridges, Arctic Ocean. Tectonophysics J 514:123–145

    Article  Google Scholar 

  • Buchs DM, Cukur D, Masago H et al (2015) Sediment flow routing during formation of forearc basins: constraints from integrated analysis of detrital pyroxenes and stratigraphy in the Kumano Basin. Jan J Earth Planet Sci Lett 414:164–175

    Article  Google Scholar 

  • Channell JET, Xuan C (2009) Self-reversal and apparent magnetic excursions in Arctic sediments. Earth Planet Sci Lett 284(1):124–131

    Article  Google Scholar 

  • Clark DL (1970) Magnetic reversals and sedimentation rates in the Arctic Ocean. Geol Soc Am Bull 81(10):3129–3124

    Article  Google Scholar 

  • Elkina D, Piskarev A (2017) Comparative paleomagnetic study of the Quaternary-Pliocene sedimentation rates in the Arctic Basin: first results, GP33B-0978, Presented at 2017 Fall Meeting, AGU, New Orleans, LA, 11–15 Dec

    Google Scholar 

  • Frederichs T (1995) Regional and temporal variations of rock magnetic parameters in Arctic marine sediments. Ber zur Polarforsch J 164:1–212

    Google Scholar 

  • Gee JS, Kent DV (2007) Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. Treatise on Geophys J 5:455–507

    Article  Google Scholar 

  • Geocap 7.1.1 for Windows http://www.geocap.no/ (2015)

    Google Scholar 

  • Glebovsky VY, Kaminsky VD, Minakov AN et al (2006) Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field. Geotectonics J 4:21–42

    Google Scholar 

  • Gorbarenko SA et al (2002) Magnetostratigraphy and tephrochronology of the upper quaternary sediments in the Okhotsk Sea: implication of terrigenous, volcanogenic and biogenic matter supply. Mar Geol J 183:107–129

    Article  Google Scholar 

  • Gusev EA, Maksimov FE, Novikhina ES et al (2012) On stratigraphy of bottom sediments from Mendeleev rise (the Arctic Ocean) region. Vestnik Saint-Petersburg University 7(4):102–115

    Google Scholar 

  • Gusev EA, Maksimov FE, Kuznetsov VY et al (2013) Stratigraphy of bottom sediments in the Mendeleev ridge area (Arctic Ocean). Dokl Earth Sci J 450:602–606

    Article  Google Scholar 

  • Gusev EA, Lukashenko RV, Popko AO et al (2014) New information on slope structure of the Mendeleev ridge seamounts (the Arctic Ocean). Dokl RAN J 455(2):184–188

    Google Scholar 

  • Gusev E, Rekant P, Kaminsky V et al (2017) Morphology of seamounts at the Mendeleev rise, Arctic Ocean. Polar Res J 36:2–10

    Article  Google Scholar 

  • Jakobsson M, Lølie R, Al-Hanbali H et al (2000) Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geol J 28:23–26

    Article  Google Scholar 

  • Jokat W, Schmidt-Aursch M (2007) Geophysical characteristics of the ultraslow spreading Gakkel ridge. Arctic Ocean Geophys J 168:983–998

    Google Scholar 

  • Kashirtsev VA, Gayduck VV, Zueva IN (2012) Geochemistry of biomarkers and organic matter catagenesis of cretaceous and Cenozoic formations in the Indigir-Zyriyansk depression (north-eastern Yakutyia). Geol Geofiz 53(8):1027–1039

    Google Scholar 

  • Khain VE (2001) Tectonics of continents and oceans (year 2000). Scientific World, Moscow

    Google Scholar 

  • Kim BI, Ivanova NM (2000) On the age of seismic units revealed on the Laptev Sea continental slope and adjacent part of the Eurasian Basin. Geological-geophysical features of the lithosphere of the Arctic. Region 3:82–92

    Google Scholar 

  • Kochegura VV (1992) Implementation of Paleomagnetic methods for geological survey of a shelf. VSEGEI, Saint Petersburg

    Google Scholar 

  • Konstantinova NP, Cherkashev GA, Novikov GV et al (2016) Ferro-manganese plaques of the Mendelelv Ridge: composition and genesis Artika. Ecologia i ekonomika 3(23):16–28

    Google Scholar 

  • Kontorovich AE, Kashirtsev VA, Danilova VP et al (2009) Molecules-biomarkers in fossilizedn organic matter and naphtides of the Siberian PreCambrian and Phanerozoic formations, SPb, VNIGRI, p 108

    Google Scholar 

  • Krylov AA, Shilov VV, Andreeva IA et al (2011) Stratigraphy and accumulation of upper quaternary sediments in the northern part of the Mendeleev rise (Amerasian Basin, Arctic Ocean). Probl Arctic Antarctic J 2(88):7–22

    Google Scholar 

  • Lane CS, Chorn BT, Johnson TC (2013) Reply to Roberts et al.: A subdecadal record of paleoclimate around the Youngest Toba Tuff in Lake Malawi. Proceedings of the National Academy of Sciences 110(33):E3048. doi:https://doi.org/10.1073/pnas.1309815110

    Article  Google Scholar 

  • Levitan MA (2015) Sedimentation rates in the Arctic Ocean during the last five marine isotope stages. Oceanology J 55(3):425–433

    Article  Google Scholar 

  • Lin’kova TI (1984) Paleomagnetism of upper Cenozoic sediments of the World Ocean. Nauka, Moscow. (in Russian)

    Google Scholar 

  • Moran K, Backman J, Brinkhuis H et al (2006) The Cenozoic palaeoenvironment of the Arctic Ocean. Nature J 441:601–606

    Article  Google Scholar 

  • Morozov AF, Petrov OV, Shokalsky SP et al (2013) New geological evidence justifying the nature of the continental area of the Central Arctic elevations. Reg Geol Metallogeny J 53:34–55

    Google Scholar 

  • Naryshkin GD (1995) Orographic map of the Arctic basin (GUNiO), VNIIO, St. Petersburg

    Google Scholar 

  • Not C, Hillaire-Marcel C (2010) Time constraints from 230Th and 231Pa data in late quaternary, low sedimentation rate sequence from the Arctic Ocean: an example from the northern Mendeleev ridge. Quat Sci Rev J 29:3665–3675

    Article  Google Scholar 

  • Nowaczyk NR, Frederichs TW, Kassens H et al (2001) Sedimentation rates in the Makarov Basin, Central Arctic Ocean: a paleomagnetic and rock magnetic approach. Paleoceanography J 16:368–389

    Article  Google Scholar 

  • Nowaczyk NR, Antonow M, Knies J et al (2003) Further rock magnetic and chronostratigraphic results on reversal excursions during the last 50 ka as derived from northern high latitudes and discrepancies in precise AMS14C dating. Geophys J 155:1065–1080

    Article  Google Scholar 

  • O’Regan M, King J, Backman J et al (2008) Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge. Paleoceanography J 23:PA1S19

    Google Scholar 

  • Owens PN et al (2016) Fingerprinting and tracing the sources of soils and sediments: earth and ocean science, geoarchaeological, forensic, and human health applications. J Earth Sci Rev 162:1–23

    Article  Google Scholar 

  • Pachalko AG, Krylov AA, Mirolyubova ES et al (2017) First findings of Pleistocene Autogenetic Carbonate Plaques (ACP) on the Mendeleev Ridge, the Arctic Ocean. V International conference of young scientists and specialists in memory of academitian Karpinsky, VSEGEI, Saint Petersburg, 28 February – 3 March 2017

    Google Scholar 

  • Peters K, Walters C, Moldowan J (2004) The biomarker guide. Cambridge University Press, p 364

    Google Scholar 

  • Petrova VI, Batova GI, Kursheva AV et al (2010) Geochemistry of the bottom sediments organic matter in Central Arctic Uplifts Province, the Arctic Ocean. Geologiya i geofizika J 51(1):113–125

    Google Scholar 

  • Petrova VI, Batova GI, Litvinenko I et al (2013) Organic matter in the Lomonosov Ridge Holocene-Pleistocene bottom sediments – biomarkers record 26th International Meeting on Organic Geochemistry (IMOG), 15–20 September 2013, 2:275–276

    Google Scholar 

  • Petrova VI, Batova GI, Kursheva AV et al (2017) Molecular geochemistry of the north-eastern Barents Sea Triassic formations and affects of tectonics and magmatizm. Geologiya i geofizika J 58(3):398–409

    Google Scholar 

  • Phomin AN (2011) Catagenesis of organic matter and petroleum potential of Mesozoic and Paleozoic deposits of the western Siberian Megabasin. INGG SO RAN, Novosibirsk. (in Russian)

    Google Scholar 

  • Piskarev AL (2004) The basement structure of the Eurasia Basin and central ridges in the Arctic Ocean. Geotektonics J 38(6):443–448

    Google Scholar 

  • Piskarev AL, Elkina DV (2014) Pliocene quaternary sediment accumulation rate at Mendeleev high, the Arctic Ocean from paleomagnetic data on bottom sediment columns. Karotazhnik 5:3–16

    Google Scholar 

  • Piskarev AL, Andreeva IA, Gus’kova EG (2013) Paleomagnetic data on sedimentation rate in the Mendeleev rise region (Arctic Ocean). Oceanography J 53(5):694–704

    Google Scholar 

  • Piskarev AL, Kireev AA, Poselov VA et al (2017) Areas of Pre-Cenozoic Basement in the Eurasian Basin (Arctic Ocean). 79th EAGE Conference and Exhibition 2017. doi: https://doi.org/10.3997/2214-4609.201701311

  • Polyak L, Bischof J, Ortiz JD et al (2009) Late quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Glob Planet Chang 68:5–17

    Article  Google Scholar 

  • Pospelova GA (2004) Geomagnetic excursus in brief history and current conditions of geomagnetic studies carried out in the Institute of Earth’s physics, Russian Academy of Sciences. Inst Fiz Zemli RAN, Moscow pp 44–55

    Google Scholar 

  • Radke M (1988) Application of aromatic compounds as maturity indicators in source rocks and crude oils. Mar Pet Geol J 5:224–236

    Article  Google Scholar 

  • Rekant PV, Petrov OV, Kashubin SN et al (2015) History of formation of the sedimentary cover of Arctic basin. Multychannel seismic approach. Reg Geol Metallogeny 64:11–27

    Google Scholar 

  • Romankevich EA (ed) (1982) Arctic seas – biogeochemistry of organic matter. Nauka, Moscow

    Google Scholar 

  • Romankevitch EA (1977) Geochemistry of oceanic organic matter. Nauka, Moscow

    Google Scholar 

  • Schneider DA, Backman J, Curry WB et al (1996) Paleomagnetic constraints on sedimentation rates in eastern Arctic Ocean. Quat Res J 46:62–71

    Article  Google Scholar 

  • Snow JE, Edmonds HN (2007) Ultraslow-spreading ridges. Rapid paradigm changes. Oceanography J 20(1):90–101

    Article  Google Scholar 

  • Sohn RA, Willis C, Humphris S et al (2008) Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature J 453:1236–1238

    Article  Google Scholar 

  • Spielhagen RF, Baumann K-H, Erlenkeuser H et al (2004) Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quat Sci Rev J 23(11–13):1455–1483

    Article  Google Scholar 

  • Stein R, Matthiessen J, Niessen F (2009) Towards a better (litho-) stratigraphy and reconstruction of quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung J 79(2):97–121

    Google Scholar 

  • Stein R, Mattheissen J, Niessen F et al (2010) Towards a better (Litho-) stratigraphy and reconstruction of quaternary Paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung J 79:97–121

    Google Scholar 

  • Stein R (2015) The expedition PS87 of the research vessel polarstern to the Arctic Ocean in 2014. Berichte zur Polar-und Meeresforschung = Reports on polar and marine research, vol 688.Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, p 273

    Google Scholar 

  • Steuerwald BA, Clark DL, Andrew JA (1968) Magnetic stratigraphy and faunal patterns in Arctic Ocean sediments. Earth Planet Sci Lett 5:79–85

    Article  Google Scholar 

  • Taldenkova EE, Nikolaev CD, Stepanova AY et al (2016) Stratigraphy and paleogeograaphy of the Arctic Amerasian Basin in neo-Pleistocene in light of lithology and paleontology information. Vestnik Moskovskogo Universiteta (ser. 5). Aust Geogr 6:3–17

    Google Scholar 

  • The Arctic Basin (Geology and Geomorphology) (2017) Kaminsky VD (ed) VNIIOkeangeologia, Saint Petersburg

    Google Scholar 

  • Thiede J, the Shipboard Scientific Party (2002) Polarstern Arktis XVII/2 cruise report: AMORE 2001 (Arctic Mid-Ocean ridge expedition). Report polar mar. Res, vol 421

    Google Scholar 

  • Tretyak AN, Vigilyanskaya LI, Dudkin VP et al (1989) Fine structure of geomagnetic field in late Cainozoe. Naukova Dumka, Kiev

    Google Scholar 

  • Vishnyakov A, Piskarev A, Cherkashev G et al (1992) Detailed mapping of deep water bottom sediments by towing geophysical complex. Vestn Ross Akad Nauk 324(1):77–80

    Google Scholar 

  • Kaban’kov VY, Andreeva IA, Ivanov VN (2004) On bottom sediments sampled on geo-traverse “Arktika-2000” in the Arctic Ocean ( the Mendeleev ridge region). Dokl RAN J 399(2):224–226

    Google Scholar 

  • Kaban’kov VY, Andreeva IA, Krupskaya VV et al (2008) New information on on composition and origin of seafloor sediments in the southern part of the Mendeleev ridge (the Arctic Ocean). Dokl RAN J 419(5):653–655

    Google Scholar 

  • Witte WK, Kent DV (1988) Revised magnetostratigraphies confirm low sedimentation rates in Arctic Ocean cores. Quat Res J 29:43–53

    Article  Google Scholar 

  • Xuan C, Channell JET (2010) Origin of apparent magnetic excursions in deep-sea sediments from Mendeleev-alpha ridge, Arctic Ocean. Geochem Geophys Geosyst 11(2)

    Article  Google Scholar 

  • Yamamoto M, Polyak L (2009) Changes in terrestrial organic matter input to the Mendeleev ridge, Arctic Ocean during the late quaternary. Glob Planet Change 68:30–37

    Article  Google Scholar 

  • Yamamoto M, Okino T, Sugisaki S et al (2008) Late Pleistocene changes in terrestrial biomarkers in sediments from the Central Arctic Ocean. Org Geochem 39(6):754–763

    Article  Google Scholar 

  • Zhamoida AI et al (2000) Supplements to the stratigraphic code of Russia. VSEGEI, Saint Petersburg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elkina, D.V., Petrova, V.I., Piskarev, A.L., Andreeva, I.A. (2019). Pliocene-Pleistocene Sedimentation. In: Piskarev, A., Poselov, V., Kaminsky, V. (eds) Geologic Structures of the Arctic Basin. Springer, Cham. https://doi.org/10.1007/978-3-319-77742-9_11

Download citation

Publish with us

Policies and ethics