Skip to main content

Different Tumor Microenvironments Lead to Different Metabolic Phenotypes

  • Chapter
The Heterogeneity of Cancer Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1063))

Abstract

The beginning of the twenty-first century offered new advances in cancer research, including the expansion of the knowledge about the tumor microenvironment (TME). Because TMEs provide the niches in which cancer cells, fibroblast, lymphocyte, and immune cells reside, they play a key role in cancer cell development, differentiation, survival, and proliferation. Throughout cancer progression, the TME constantly evolves, causing cancer cells to adapt to the new conditions. The heterogeneity of cancer, evidenced by diverse proliferation rates, cellular structure, metabolism, and gene expression, presents challenges for cancer treatments despite the advances in research. This chapter discusses how different tumor microenvironments lead to specific metabolic adaptations which drive cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

α-KG:

α-ketoglutarate

ACC:

Acetyl-CoA carboxylase

AMPK:

AMP-activated protein kinase

ATP:

Adenosine triphosphate

CAF:

Cancer-associated fibroblasts

Cav-1:

Caveolin-1

ETC:

Electron transport chain

FABP4:

Fatty acid-binding protein 4

FASN:

Fatty acid synthase

HBx:

Hepatitis B virus X protein

HCC:

Hepatocellular carcinoma

hMSCs:

Human mesenchymal stem cells

KRAS:

Kirsten rat sarcoma viral oncogene homolog

NADPH:

Nicotinamide adenine dinucleotide phosphate

SCD1:

Stearoyl-CoA desaturase 1

TME:

Tumor microenvironment

References

  1. Ward, P. S., & Thompson, C. B. (2012). Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate. Cancer Cell, 21(3), 297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

    Article  CAS  PubMed  Google Scholar 

  4. Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews Cancer, 11(2), 85–95.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, M. D., et al. (2016). HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress. Oncotarget, 7(6), 6711–6726.

    PubMed  PubMed Central  Google Scholar 

  6. Boroughs, L. K., & DeBerardinis, R. J. (2015). Metabolic pathways promoting cancer cell survival and growth. Nature Cell Biology, 17(4), 351–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng, T. L., et al. (2011). Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8674–8679.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Choo, A. Y., et al. (2010). Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Molecular Cell, 38(4), 487–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pavlova, N. N., & Thompson, C. B. (2016). The emerging hallmarks of cancer metabolism. Cell Metabolism, 23(1), 27–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), R453–R462.

    Article  CAS  PubMed  Google Scholar 

  11. Miyata, T., Takizawa, S., & de Strihou, C. V. (2011). Hypoxia. 1. Intracellular sensors for oxygen and oxidative stress: Novel therapeutic targets. American Journal of Physiology-Cell Physiology, 300(2), C226–C231.

    Article  CAS  PubMed  Google Scholar 

  12. Jezierska-Drutel, A., Rosenzweig, S. A., & Neumann, C. A. (2013). Role of oxidative stress and the microenvironment in breast cancer development and progression. Advances in Cancer Research, 119, 107–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stolarek, R. A., et al. (2010). Increased H2O2 level in exhaled breath condensate in primary breast cancer patients. Journal of Cancer Research and Clinical Oncology, 136(6), 923–930.

    Article  CAS  PubMed  Google Scholar 

  14. Le, A., et al. (2012). Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metabolism, 15(1), 110–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kato, Y., et al. (2013). Acidic extracellular microenvironment and cancer. Cancer Cell International, 13(1), 89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rofstad, E. K., et al. (2006). Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Research, 66(13), 6699–6707.

    Article  CAS  PubMed  Google Scholar 

  17. Mashima, T., Seimiya, H., & Tsuruo, T. (2009). De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. British Journal of Cancer, 100(9), 1369–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DeBerardinis, R. J., et al. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19345–19350.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Young, R. M., et al. (2013). Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes & Development, 27(10), 1115–1131.

    Article  CAS  Google Scholar 

  20. Viale, A., et al. (2014). Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 514(7524), 628–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kamphorst, J. J., et al. (2013). Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 8882–8887.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ackerman, D., & Simon, M. C. (2014). Hypoxia, lipids, and cancer: Surviving the harsh tumor microenvironment. Trends in Cell Biology, 24(8), 472–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nieman, K. M., et al. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, C., et al. (2014). Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Molecular Cell, 56(3), 414–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davidson, S. M., et al. (2016). Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metabolism, 23(3), 517–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wise, D. R., et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18782–18787.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Solaini, G., et al. (2010). Hypoxia and mitochondrial oxidative metabolism. Biochimica et Biophysica Acta-Bioenergetics, 1797(6-7), 1171–1177.

    Article  CAS  Google Scholar 

  28. Mullen, A. R., et al. (2012). Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 481(7381), 385–U171.

    Article  CAS  Google Scholar 

  29. Sotgia, F., et al. (2012). Caveolin-1 and cancer metabolism in the tumor microenvironment: Markers, models, and mechanisms. Annual Review of Pathology: Mechanisms of Disease, 7, 423–467.

    Article  CAS  Google Scholar 

  30. Rattigan, Y. L., et al. (2012). Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Experimental Cell Research, 318(4), 326–335.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Antonio, M.J., Le, A. (2018). Different Tumor Microenvironments Lead to Different Metabolic Phenotypes. In: Le, A. (eds) The Heterogeneity of Cancer Metabolism. Advances in Experimental Medicine and Biology, vol 1063. Springer, Cham. https://doi.org/10.1007/978-3-319-77736-8_9

Download citation

Publish with us

Policies and ethics