Skip to main content

The Metabolism of Renal Cell Carcinomas and Liver Cancer

  • Chapter
The Heterogeneity of Cancer Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1063))

  • 4206 Accesses

Abstract

According to data from the American Cancer Society, cancer is one of the deadliest health problems globally. Annually, renal cell carcinoma (RCC) and liver cancer cause more than 100,000 and 800,000 deaths worldwide, respectively [1–4], creating an urgent need to develop effective therapeutic treatments to increase patient survival outcomes. New therapeutic treatments are expected to address a major factor contributing to cancer’s resistance to standard therapies: oncogenic heterogeneity. Because gene expression can vary tremendously among different types of cancers, different patients of the same tumor type, and even within individual tumors, various metabolic phenotypes can emerge, making single-therapy approaches insufficient. This heterogeneity translates into changes in the landscape of metabolic enzymes and biomolecules within both the cancer cell and tumor microenvironment. Novel strategies targeting the diverse metabolism of cancers aim to overcome this obstacle, and though some have yielded positive results, it remains a challenge to uncover all of the distinct metabolic profiles of RCC and liver cancer. Nonetheless, the metabolic-oriented research focusing on these cancers has offered different, fresh new perspectives, which are expected to contribute heavily to the development of new therapeutic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

α-KG:

α-Ketoglutarate

ACC:

Acetyl-CoA carboxylase

AMPK:

AMP-activated protein kinase

ATP:

Adenosine triphosphate

ccRCC:

Clear-cell renal cell carcinoma

CL:

Cardiolipin

COX5B:

Cytochrome C oxidase subunit 5B

DEN:

Diethylnitrosamine

ePC:

Ether-type phosphatidylcholine

ePE:

Ether-type PE

ERRα:

Estrogen-related receptor Α

FASN:

Fatty acid synthase

FH:

Fumarate hydratase

G6PH:

Glucose-6-phosphate dehydrogenase

GLS2:

Glutaminase 2

Glu:

Glutamine

GLUT1:

Glucose transporter 1

GLUT2:

Glucose transporter 2

HCC:

Hepatocellular carcinoma

HIF:

Hypoxia-inducible factor

HIF-1α:

Hypoxia-inducible factor 1-alpha

HK2:

Hexokinase 2

LCSCs:

Liver cancer stem cells

LDHA:

Lactate dehydrogenase A

LRH-1:

Liver receptor homolog 1

Me1:

Malic enzyme 1

MIR21:

MicroRNAs-21

mTORC1:

Mechanistic target of rapamycin complex 1

NADPH:

Nicotinamide adenine dinucleotide phosphate

Non-LCSCs:

Non-liver cancer stem cells

PE:

Phosphatidylethanolamine

PGK1:

Phosphoglycerate kinase 1

PGLS:

6-Phosphogluconolactonase

PI3K:

Phosphatidylinositol-3 kinases

PTEN:

Phosphatase and tensin homolog deleted in chromosome 10

RCC:

Renal cell carcinoma

ROS:

Reactive oxygen species

SM:

Sphingomyelin

STF-31:

4-[[[[4-(1,1-Dimethylethyl)phenyl]sulfonyl]amino]methyl]-N-3-pyridinyl-benzamide

TALDO:

Transaldolase

TKT:

Transketolase

TSC2:

Tuberous sclerosis 2

VEGFR:

Vascular endothelial growth factor receptor

VHL :

Von Hippel-Lindau tumor suppressor gene

References

  1. Jemal, A., et al. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90.

    Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 67(1), 7–30.

    Google Scholar 

  3. GBD 2015 Mortality and Causes of Death Collaborators. (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the global burden of disease study 2015. Lancet, 388(10053), 1459–1544.

    Article  Google Scholar 

  4. Global Burden of Disease Liver Cancer Collaboration. (2017). The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national Level: Results from the global burden of disease study 2015. JAMA Oncology, 3(12), 1683–1691.

    Article  PubMed Central  Google Scholar 

  5. Gu, F. L., et al. (1991). Cellular origin of renal cell carcinoma—an immunohistological study on monoclonal antibodies. Scandinavian Journal of Urology and Nephrology. Supplementum, 138, 203–206.

    PubMed  CAS  Google Scholar 

  6. Sudarshan, S., et al. (2013). Metabolism of kidney cancer: From the lab to clinical practice. European Urology, 63(2), 244–251.

    Article  CAS  PubMed  Google Scholar 

  7. Rini, B. I., Campbell, S. C., & Escudier, B. (2009). Renal cell carcinoma. Lancet, 373(9669), 1119–1132.

    Article  CAS  PubMed  Google Scholar 

  8. Nickerson, M. L., et al. (2008). Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clinical Cancer Research, 14(15), 4726–4734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sato, Y., et al. (2013). Integrated molecular analysis of clear-cell renal cell carcinoma. Nature Genetics, 45(8), 860–867.

    Article  CAS  PubMed  Google Scholar 

  10. Czyzyk-Krzeska, M. F., & Meller, J. (2004). von Hippel-Lindau tumor suppressor: Not only HIF’s executioner. Trends in Molecular Medicine, 10(4), 146–149.

    Article  CAS  PubMed  Google Scholar 

  11. Gordan, J. D., Thompson, C. B., & Simon, M. C. (2007). HIF and c-Myc: Sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell, 12(2), 108–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stubbs, M., & Griffiths, J. R. (2010). The altered metabolism of tumors: HIF-1 and its role in the Warburg effect. Advances in Enzyme Regulation, 50(1), 44–55.

    Article  PubMed  Google Scholar 

  13. Semenza, G. L. (2007). HIF-1 mediates the Warburg effect in clear cell renal carcinoma. Journal of Bioenergetics and Biomembranes, 39(3), 231–234.

    Article  CAS  PubMed  Google Scholar 

  14. Pinthus, J. H., et al. (2011). Metabolic features of clear-cell renal cell carcinoma: Mechanisms and clinical implications. Canadian Urological Association Journal, 5(4), 274–282.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cancer Genome Atlas Research Network. (2013). Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499(7456), 43–49.

    Article  CAS  Google Scholar 

  16. Rini, B. I., & Atkins, M. B. (2009). Resistance to targeted therapy in renal-cell carcinoma. The Lancet Oncology, 10(10), 992–1000.

    Article  CAS  PubMed  Google Scholar 

  17. Gameiro, P. A., et al. (2013). In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metabolism, 17(3), 372–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jang, Y., et al. (2015). Suppression of mitochondrial respiration with auraptene inhibits the progression of renal cell carcinoma: Involvement of HIF-1alpha degradation. Oncotarget, 6, 38127.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chan, D. A., et al. (2011). Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Science Translational Medicine, 3(94), 94ra70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, Y., et al. (2010). UOK 262 cell line, fumarate hydratase deficient (FH-/FH-) hereditary leiomyomatosis renal cell carcinoma: In vitro and in vivo model of an aberrant energy metabolic pathway in human cancer. Cancer Genetics and Cytogenetics, 196(1), 45–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tong, W. H., et al. (2011). The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell, 20(3), 315–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xie, H., et al. (2009). LDH-A inhibition, a therapeutic strategy for treatment of hereditary leiomyomatosis and renal cell cancer. Molecular Cancer Therapeutics, 8(3), 626–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, J., et al. (2013). Metformin inhibits renal cell carcinoma in vitro and in vivo xenograft. Urologic Oncology, 31(2), 264–270.

    Article  CAS  PubMed  Google Scholar 

  24. Saito, K., et al. (2016). Lipidomic signatures and associated transcriptomic profiles of clear cell renal cell carcinoma. Scientific Reports, 6, 28932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fagone, P., & Jackowski, S. (2013). Phosphatidylcholine and the CDP-choline cycle. Biochimica et Biophysica Acta, 1831(3), 523–532.

    Article  CAS  PubMed  Google Scholar 

  26. Vance, J. E., & Tasseva, G. (2013). Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochimica et Biophysica Acta, 1831(3), 543–554.

    Article  CAS  PubMed  Google Scholar 

  27. Vance, J. E. (2008). Phosphatidylserine and phosphatidylethanolamine in mammalian cells: Two metabolically related aminophospholipids. Journal of Lipid Research, 49(7), 1377–1387.

    Article  CAS  PubMed  Google Scholar 

  28. Farine, L., & Butikofer, P. (2013). The ins and outs of phosphatidylethanolamine synthesis in Trypanosoma brucei. Biochimica et Biophysica Acta, 1831(3), 533–542.

    Article  CAS  PubMed  Google Scholar 

  29. Barcelo-Coblijn, G., et al. (2011). Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19569–19574.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ding, T., et al. (2008). SMS overexpression and knockdown: Impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apoptosis. Journal of Lipid Research, 49(2), 376–385.

    Article  CAS  PubMed  Google Scholar 

  31. Catchpole, G., et al. (2011). Metabolic profiling reveals key metabolic features of renal cell carcinoma. Journal of Cellular and Molecular Medicine, 15(1), 109–118.

    Article  CAS  PubMed  Google Scholar 

  32. Menendez, J. A., & Lupu, R. (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews Cancer, 7(10), 763–777.

    Article  CAS  PubMed  Google Scholar 

  33. Ham, A. J., & Liebler, D. C. (1997). Antioxidant reactions of vitamin E in the perfused rat liver: Product distribution and effect of dietary vitamin E supplementation. Archives of Biochemistry and Biophysics, 339(1), 157–164.

    Article  CAS  PubMed  Google Scholar 

  34. Llovet, J. M., et al. (2016). Hepatocellular carcinoma. Nature Reviews Disease Primers, 2, 16018.

    Article  PubMed  Google Scholar 

  35. Theise, N. D., et al. (2010). In F. T. Bosman et al. (Eds.), Hepatocellular carcinoma in WHO classification of tumor of the digestive system. Lyon, France: International Agency for Research on Cancer.

    Google Scholar 

  36. Forner, A., Llovet, J. M., & Bruix, J. (2012). Hepatocellular carcinoma. Lancet, 379(9822), 1245–1255.

    Article  PubMed  Google Scholar 

  37. Zucman-Rossi, J., et al. (2015). Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology, 149(5), 1226–1239.e4.

    Article  CAS  PubMed  Google Scholar 

  38. Schulze, K., Nault, J.-C., & Villanueva, A. (2016). Genetic profiling of hepatocellular carcinoma using next-generation sequencing. Journal of Hepatology, 65(5), 1031–1042.

    Article  CAS  PubMed  Google Scholar 

  39. Bobrovnikova-Marjon, E., & Hurov, J. B. (2014). Targeting metabolic changes in cancer: Novel therapeutic approaches. Annual Review of Medicine, 65, 157–170.

    Article  CAS  PubMed  Google Scholar 

  40. Wolpaw, A. J., & Dang, C. V. (2018). Exploiting metabolic vulnerabilities of cancer with precision and accuracy. Trends in Cell Biology, 28, 201.

    Article  CAS  PubMed  Google Scholar 

  41. Ally, A., et al. (2017). Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell, 169(7), 1327–1341.e23.

    Article  CAS  Google Scholar 

  42. Calderaro, J., et al. (2017). Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. Journal of Hepatology, 67(4), 727–738.

    Article  CAS  PubMed  Google Scholar 

  43. Zheng, H., et al. (2018). Single cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology. https://doi.org/10.1002/hep.29778.

  44. Xue, R., et al. (2016). Variable intra-tumor genomic heterogeneity of multiple lesions in patients with hepatocellular carcinoma. Gastroenterology, 150(4), 998–1008.

    Article  PubMed  Google Scholar 

  45. Lin, D. C., et al. (2017). Genomic and epigenomic heterogeneity of hepatocellular carcinoma. Cancer Research, 77(9), 2255–2265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yuneva, M. O., et al. (2012). The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metabolism, 15(2), 157–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wise, D. R., et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18782–18787.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xu, P., et al. (2016). LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer. Genes & Development, 30(11), 1255–1260.

    Article  CAS  Google Scholar 

  49. Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hu, H., et al. (2017). Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology, 65(2), 515–528.

    Article  CAS  PubMed  Google Scholar 

  51. Dang, C. V., Le, A., & Gao, P. (2009). MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clinical Cancer Research, 15(21), 6479–6483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dang, C. V. (2010). Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Research, 70(3), 859–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hur, W., et al. (2017). Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133. Scientific Reports, 7, 45557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Nguyen, T., Le, A. (2018). The Metabolism of Renal Cell Carcinomas and Liver Cancer. In: Le, A. (eds) The Heterogeneity of Cancer Metabolism. Advances in Experimental Medicine and Biology, vol 1063. Springer, Cham. https://doi.org/10.1007/978-3-319-77736-8_8

Download citation

Publish with us

Policies and ethics