Skip to main content

Targeting Metabolic Cross Talk between Cancer Cells and Cancer-Associated Fibroblasts

  • Chapter
The Heterogeneity of Cancer Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1063))

  • 3265 Accesses

Abstract

Although tumorigenesis has classically been regarded as a genetic disease of uncontrolled cell growth, the importance of the tumor microenvironment (TME) is continuously emphasized by the accumulating evidence that cancer growth is not simply dependent on the cancer cells themselves [1, 2] but also dependent on angiogenesis [3–6], inflammation [7, 8], and the supporting roles of cancer-associated fibroblasts (CAFs) [9, 10]. After the discovery that CAFs are able to remodel the tumor matrix within the TME and provide the nutrients and chemicals to promote cancer cell growth [11], many studies have aimed to uncover the cross talk between cancer and CAFs. Moreover, a new paradigm in cancer metabolism shows how cancer cells act like “metabolic parasites” to uptake the high-energy metabolites, such as lactate, ketone bodies, free fatty acid, and glutamine from supporting cells, including CAFs and cancer-associated adipocytes (CAAs) [12, 13]. This chapter provides an overview of the metabolic coupling between CAFs and cancer to further define the therapeutic options to disrupt the CAF-cancer cell interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

βOHB:

β-Hydroxybutyrate

ACAT1:

Acetyl-CoA acetyltransferase

ACC:

Acetyl-CoA carboxylase

ACCA:

Alpha-cyano-4-hydroxycinnamic acid

ACLY:

ATP citrate lyase

ASCT2:

Alanine, serine, cysteine-preferring transporter 2

BDH1:

3-Hydroxybutyrate dehydrogenase 1

CAAs:

Cancer-associated adipocytes

CAFs:

Cancer-associated fibroblasts

DAG:

Diacylglycerol

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

FASN:

Fatty acid synthase

G3P:

Glycerol-3-phosphate

GLS:

Glutaminase

HGH:

Human growth hormone

HMG-CoA:

3-Hydroxy-3-methylglutaryl-CoA

HMGCS2:

3-Hydroxy-3-methylglutaryl-CoA synthase 2

HSP60:

Heat-shock protein 60

LPA:

Lysophosphatidic acid

MCT1:

Monocarboxylate transporter 1

MCT4:

Monocarboxylate transporter 4

MMP:

Matrix metalloprotease

OXPHOS:

Oxidative phosphorylation

PA:

Phosphatidic acid

PI3K:

Phosphoinositide 3-kinase

PIP3:

Phosphatidylinositol (3,4,5)-trisphosphate

PTEN:

Phosphatase and tensin homolog deleted on chromosome 10

TAG:

Triacylglycerol

TCA:

Tricarboxylic acid

TME:

Tumor microenvironment

References

  1. Bissell, M. J., & Radisky, D. (2001). Putting tumours in context. Nature Reviews. Cancer, 1(1), 46–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tlsty, T. D., & Coussens, L. M. (2006). Tumor stroma and regulation of cancer development. Annual Review of Pathology, 1, 119–150.

    Article  CAS  PubMed  Google Scholar 

  3. Folkman, J. (1971). Tumor angiogenesis: Therapeutic implications. The New England Journal of Medicine, 285(21), 1182–1186.

    Article  CAS  PubMed  Google Scholar 

  4. O’Reilly, M. S., et al. (1997). Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell, 88(2), 277–285.

    Article  PubMed  Google Scholar 

  5. Kalluri, R. (2003). Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews. Cancer, 3(6), 422–433.

    Article  CAS  PubMed  Google Scholar 

  6. Kim, K. J., et al. (1993). Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature, 362(6423), 841–844.

    Article  CAS  PubMed  Google Scholar 

  7. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Visser, K. E., Korets, L. V., & Coussens, L. M. (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell, 7(5), 411–423.

    Article  CAS  PubMed  Google Scholar 

  9. Tlsty, T. D., & Hein, P. W. (2001). Know thy neighbor: Stromal cells can contribute oncogenic signals. Current Opinion in Genetics & Development, 11(1), 54–59.

    Article  CAS  Google Scholar 

  10. Elenbaas, B., & Weinberg, R. A. (2001). Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Experimental Cell Research, 264(1), 169–184.

    Article  CAS  PubMed  Google Scholar 

  11. Calvo, F., et al. (2015). Cdc42EP3/BORG2 and Septin network enables mechano-transduction and the emergence of cancer-associated fibroblasts. Cell Reports, 13(12), 2699–2714.

    Article  CAS  PubMed  Google Scholar 

  12. Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2012). Power surge: Supporting cells “fuel” cancer cell mitochondria. Cell Metabolism, 15(1), 4–5.

    Article  CAS  PubMed  Google Scholar 

  13. Martinez-Outschoorn, U. E., et al. (2011). Energy transfer in “parasitic” cancer metabolism: Mitochondria are the powerhouse and Achilles’ heel of tumor cells. Cell Cycle, 10(24), 4208–4216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kilvaer, T. K., et al. (2015). Cancer associated fibroblasts in stage I-IIIA NSCLC: Prognostic impact and their correlations with tumor molecular markers. PLoS One, 10(8), e0134965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ha, S. Y., et al. (2014). The prognostic significance of cancer-associated fibroblasts in esophageal squamous cell carcinoma. PLoS One, 9(6), e99955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheteh, E. H., et al. (2017). Human cancer-associated fibroblasts enhance glutathione levels and antagonize drug-induced prostate cancer cell death. Cell Death & Disease, 8(6), e2848.

    Article  CAS  Google Scholar 

  17. Madar, S., Goldstein, I., & Rotter, V. (2013). ‘Cancer associated fibroblasts’–more than meets the eye. Trends in Molecular Medicine, 19(8), 447–453.

    Article  CAS  PubMed  Google Scholar 

  18. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

    Article  CAS  PubMed  Google Scholar 

  19. Martinez-Outschoorn, U. E., Lisanti, M. P., & Sotgia, F. (2014). Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Seminars in Cancer Biology, 25, 47–60.

    Article  CAS  PubMed  Google Scholar 

  20. Bruntz, R. C., et al. (2017). Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM). The Journal of Biological Chemistry, 292(28), 11601–11609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fan, T. W., et al. (2009). Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Molecular Cancer, 8, 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elgogary, A., et al. (2016). Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 113(36), E5328–E5336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lane, A. N., & Fan, T. W. (2017). NMR-based stable isotope resolved metabolomics in systems biochemistry. Archives of Biochemistry and Biophysics, 628, 123–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barone, I., et al. (2012). Leptin mediates tumor-stromal interactions that promote the invasive growth of breast cancer cells. Cancer Research, 72(6), 1416–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Erez, N., et al. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17(2), 135–147.

    Article  CAS  PubMed  Google Scholar 

  26. Casey, T., et al. (2009). Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Research and Treatment, 114(1), 47–62.

    Article  CAS  PubMed  Google Scholar 

  27. Ma, X. J., et al. (2009). Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Research, 11(1), R7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Finak, G., et al. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine, 14(5), 518–527.

    Article  CAS  PubMed  Google Scholar 

  29. Sherman-Baust, C. A., et al. (2003). Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell, 3(4), 377–386.

    Article  CAS  PubMed  Google Scholar 

  30. Hodkinson, P. S., Mackinnon, A. C., & Sethi, T. (2007). Extracellular matrix regulation of drug resistance in small-cell lung cancer. International Journal of Radiation Biology, 83(11–12), 733–741.

    Article  CAS  PubMed  Google Scholar 

  31. Crawford, Y., et al. (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 15(1), 21–34.

    Article  CAS  PubMed  Google Scholar 

  32. Straussman, R., et al. (2012). Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature, 487(7408), 500–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191), 309–314.

    Article  CAS  PubMed  Google Scholar 

  34. Pavlides, S., et al. (2009). The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 8(23), 3984–4001.

    Article  CAS  PubMed  Google Scholar 

  35. Lee, M., & Yoon, J. H. (2015). Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World Journal of Biological Chemistry, 6(3), 148–161.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Faubert, B., et al. (2017). Lactate metabolism in human lung tumors. Cell, 171(2), 358–371 e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van Hall, G., et al. (2009). Blood lactate is an important energy source for the human brain. Journal of Cerebral Blood Flow and Metabolism, 29(6), 1121–1129.

    Article  CAS  PubMed  Google Scholar 

  38. Medina, J. M., & Tabernero, A. (2005). Lactate utilization by brain cells and its role in CNS development. Journal of Neuroscience Research, 79(1–2), 2–10.

    Article  CAS  PubMed  Google Scholar 

  39. Bartelds, B., et al. (1999). Myocardial lactate metabolism in fetal and newborn lambs. Circulation, 99(14), 1892–1897.

    Article  CAS  PubMed  Google Scholar 

  40. Fujiwara, S., et al. (2015). Lactate, a putative survival factor for myeloma cells, is incorporated by myeloma cells through monocarboxylate transporters 1. Experimental Hematology & Oncology, 4, 12.

    Article  CAS  Google Scholar 

  41. Hirschhaeuser, F., Sattler, U. G., & Mueller-Klieser, W. (2011). Lactate: A metabolic key player in cancer. Cancer Research, 71(22), 6921–6925.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, H., et al. (2016). Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife, 5, e10250.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ronnov-Jessen, L., Petersen, O. W., & Bissell, M. J. (1996). Cellular changes involved in conversion of normal to malignant breast: Importance of the stromal reaction. Physiological Reviews, 76(1), 69–125.

    Article  CAS  PubMed  Google Scholar 

  44. Whitaker-Menezes, D., et al. (2011). Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle, 10(11), 1772–1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rattigan, Y. I., et al. (2012). Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Experimental Cell Research, 318(4), 326–335.

    Article  CAS  PubMed  Google Scholar 

  46. Hong, C. S., et al. (2016). MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Reports, 14(7), 1590–1601.

    Article  CAS  PubMed  Google Scholar 

  47. Gladden, L. B. (2004). Lactate metabolism: A new paradigm for the third millennium. The Journal of Physiology, 558(Pt 1), 5–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Draoui, N., & Feron, O. (2011). Lactate shuttles at a glance: From physiological paradigms to anti-cancer treatments. Disease Models & Mechanisms, 4(6), 727–732.

    Article  CAS  Google Scholar 

  49. Sonveaux, P., et al. (2008). Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. The Journal of Clinical Investigation, 118(12), 3930–3942.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Baek, G., et al. (2014). MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Reports, 9(6), 2233–2249.

    Article  CAS  PubMed  Google Scholar 

  51. Pertega-Gomes, N., et al. (2014). A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer. BMC Cancer, 14, 352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Witkiewicz, A. K., et al. (2012). Using the “reverse Warburg effect” to identify high-risk breast cancer patients: Stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle, 11(6), 1108–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lamb, R., et al. (2014). Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget, 5(22), 11029–11037.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wu, H., et al. (2012). Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. The Journal of Pathology, 227(2), 189–199.

    Article  CAS  PubMed  Google Scholar 

  55. Xie, J., et al. (2014). Beyond Warburg effect–dual metabolic nature of cancer cells. Scientific Reports, 4, 4927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Romero-Garcia, S., et al. (2016). Lactate contribution to the tumor microenvironment: Mechanisms, effects on immune cells and therapeutic relevance. Frontiers in Immunology, 7, 52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Colen, C. B., et al. (2011). Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: An in vivo study. Neoplasia, 13(7), 620–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Colen, C. B., et al. (2006). Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy: An in vitro study. Neurosurgery, 59(6), 1313–1323.

    Article  PubMed  Google Scholar 

  59. Ovens, M. J., et al. (2010). AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10. The Biochemical Journal, 425(3), 523–530.

    Article  CAS  PubMed  Google Scholar 

  60. Perez-Escuredo, J., et al. (2016). Monocarboxylate transporters in the brain and in cancer. Biochimica et Biophysica Acta, 1863(10), 2481–2497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ben Sahra, I., et al. (2010). Metformin in cancer therapy: A new perspective for an old antidiabetic drug? Molecular Cancer Therapeutics, 9(5), 1092–1099.

    Article  CAS  PubMed  Google Scholar 

  62. Kozka, I. J., et al. (1995). The effects of insulin on the level and activity of the GLUT4 present in human adipose cells. Diabetologia, 38(6), 661–666.

    Article  CAS  PubMed  Google Scholar 

  63. Martinez-Outschoorn, U. E., et al. (2010). Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle, 9(16), 3256–3276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wise, D. R., & Thompson, C. B. (2010). Glutamine addiction: A new therapeutic target in cancer. Trends in Biochemical Sciences, 35(8), 427–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Romero, I. L., et al. (2015). Molecular pathways: Trafficking of metabolic resources in the tumor microenvironment. Clinical Cancer Research, 21(4), 680–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pavlides, S., et al. (2010). The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle, 9(17), 3485–3505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, Q., et al. (2015). Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. The Journal of Pathology, 236(3), 278–289.

    Article  CAS  PubMed  Google Scholar 

  68. Gupta, S., Roy, A., & Dwarakanath, B. S. (2017). Metabolic cooperation and competition in the tumor microenvironment: Implications for therapy. Frontiers in Oncology, 7, 68.

    Article  PubMed  PubMed Central  Google Scholar 

  69. van Geldermalsen, M., et al. (2016). ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene, 35(24), 3201–3208.

    Article  CAS  PubMed  Google Scholar 

  70. Wang, Q., et al. (2014). Targeting glutamine transport to suppress melanoma cell growth. International Journal of Cancer, 135(5), 1060–1071.

    Article  CAS  PubMed  Google Scholar 

  71. Esslinger, C. S., Cybulski, K. A., & Rhoderick, J. F. (2005). Ngamma-aryl glutamine analogues as probes of the ASCT2 neutral amino acid transporter binding site. Bioorganic & Medicinal Chemistry, 13(4), 1111–1118.

    Article  CAS  Google Scholar 

  72. Marshall, A. D., et al. (2017). ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogene, 6(7), e367.

    Article  CAS  Google Scholar 

  73. Todorova, V. K., et al. (2011). Tamoxifen and raloxifene suppress the proliferation of estrogen receptor-negative cells through inhibition of glutamine uptake. Cancer Chemotherapy and Pharmacology, 67(2), 285–291.

    Article  CAS  PubMed  Google Scholar 

  74. Wu, D., Zhuo, L., & Wang, X. (2017). Metabolic reprogramming of carcinoma-associated fibroblasts and its impact on metabolic heterogeneity of tumors. Seminars in Cell & Developmental Biology, 64, 125–131.

    Article  CAS  Google Scholar 

  75. Grabacka, M., et al. (2016). Regulation of ketone body metabolism and the role of PPARalpha. International Journal of Molecular Sciences, 17(12), 2093.

    Article  CAS  PubMed Central  Google Scholar 

  76. Fiaschi, T., et al. (2012). Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Research, 72(19), 5130–5140.

    Article  CAS  PubMed  Google Scholar 

  77. Bonuccelli, G., et al. (2010). Ketones and lactate “fuel” tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle, 9(17), 3506–3514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Martinez-Outschoorn, U. E., et al. (2012). Ketone bodies and two-compartment tumor metabolism: Stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle, 11(21), 3956–3963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Saraon, P., et al. (2013). Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Molecular & Cellular Proteomics, 12(6), 1589–1601.

    Article  CAS  Google Scholar 

  80. Newman, J. C., & Verdin, E. (2014). Ketone bodies as signaling metabolites. Trends in Endocrinology and Metabolism, 25(1), 42–52.

    Article  CAS  PubMed  Google Scholar 

  81. Glew, R. H. (2010). You can get there from here: Acetone, anionic ketones and even-carbon fatty acids can provide substrates for gluconeogenesis. Nigerian Journal of Physiological Sciences, 25(1), 2–4.

    PubMed  Google Scholar 

  82. Miller, O. N., & Bazzano, G. (1965). Propanediol metabolism and its relation to lactic acid metabolism. Annals of the New York Academy of Sciences, 119(3), 957–973.

    Article  CAS  PubMed  Google Scholar 

  83. Pellerin, L., et al. (2005). Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. Journal of Neuroscience Research, 79(1–2), 55–64.

    Article  CAS  PubMed  Google Scholar 

  84. Nieman, K. M., et al. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vinokurov, V. L., & Kolosov, A. E. (1980). Ovarian cancer metastasis to the greater omentum. Voprosy Onkologii, 26(2), 30–34.

    PubMed  CAS  Google Scholar 

  86. Guaita-Esteruelas, S., et al. (2017). Exogenous FABP4 increases breast cancer cell proliferation and activates the expression of fatty acid transport proteins. Molecular Carcinogenesis, 56(1), 208–217.

    Article  CAS  PubMed  Google Scholar 

  87. Uehara, H., et al. (2014). Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression. International Journal of Cancer, 135(11), 2558–2568.

    Article  CAS  PubMed  Google Scholar 

  88. Dirat, B., et al. (2011). Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Research, 71(7), 2455–2465.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Jung, J.G., Le, A. (2018). Targeting Metabolic Cross Talk between Cancer Cells and Cancer-Associated Fibroblasts. In: Le, A. (eds) The Heterogeneity of Cancer Metabolism. Advances in Experimental Medicine and Biology, vol 1063. Springer, Cham. https://doi.org/10.1007/978-3-319-77736-8_12

Download citation

Publish with us

Policies and ethics