3D Virtual System Based on Cycling Tracks for Increasing Leg Strength in Children

  • Edwin Pruna
  • Ivón Escobar
  • Washington Quevedo
  • Andrés Acurio
  • Marco Pilatásig
  • Luis Mena
  • José Bucheli
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)

Abstract

A 3D virtual system based on cycling tracks is presented. The virtual environment is developed in Unity 3D. Two games are created with different levels of difficulty. The system is created for improving strength, resistance and muscle activation in children. Operation tests and usability are performed in four children between 5 and 9 years old. After the usability surveys SEQ, the outcomes (54.5 ± 0.34) shows that users feel immersed and enjoy the game. The system motivates the user to continue using it.

Keywords

Unity 3D Virtual rehabilitation Cerebral palsy SEQ 

Notes

Acknowledgements

We thank the “Universidad de las Fuerzas Armadas ESPE” for financing the investigation project number 2016-PIC-0017.

References

  1. 1.
    Bax, M., Goldstein, M., Rosenbaum, P., et al.: Proposed definition and classification of cerebral palsy. Dev. Med. Child Neurol. 47, 571–576 (2005)CrossRefGoogle Scholar
  2. 2.
    Oskoui, M., Coutinho, F., Dykeman, J., et al.: An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev. Med. Child Neurol. 55, 509–519 (2013)CrossRefGoogle Scholar
  3. 3.
    Chen, C.L., Chen, C.Y., Lin, K.C., Chen, K.H., Wu, C.Y., Lin, C.H., et al.: Relationships between developmental profiles and ambulatory ability in a follow-up study of pre school children with spastic quadriplegic cerebral palsy. Chang Gung Med. J. 33, 524–531 (2010)Google Scholar
  4. 4.
    Chen, C.L., Chen, K.H., Lin, K.C., Wu, C.Y., Chen, C.Y., Wong, A.M., et al.: Comparison of developmental pattern change in preschool children with spastic diplegic and quadriplegic cerebral palsy. Chang Gung Med. J. 33, 407–414 (2010)Google Scholar
  5. 5.
    De Campos, A.C., da Costa, C.S., Rocha, N.A.: Measuring changes in functional mobility in children with mild cerebral palsy. Dev. Neurorehabil. 14, 140–144 (2011)CrossRefGoogle Scholar
  6. 6.
    Prosser, L.A., Lee, S.C., Barbe, M.F., VanSant, A.F., Lauer, R.T.: Trunk and hip muscle activity in early walkers with and without cerebral palsy – a frequency analysis. J. Electromyogr. Kinesiol. 20, 851–859 (2010)CrossRefGoogle Scholar
  7. 7.
    Bjornson, K., Belza, B., Kartin, D., Logsdon, R., McLaughlin, J.F.: Ambulatory physical activity performance in youth with cerebral palsy and youth who are typically developing. Phys. Ther. 87, 248–257 (2007)CrossRefGoogle Scholar
  8. 8.
    Fernandes, R., Sanesco, A.: Early physical activity promotes lower prevalence of chronic disease in adulthood. Hypertens. Res. 33, 926–931 (2010)CrossRefGoogle Scholar
  9. 9.
    Eek, M.N., Beckung, E.: Walking ability is related to muscle strength in children with cerebral palsy. Gait Posture 28, 366–371 (2008)CrossRefGoogle Scholar
  10. 10.
    Eek, M.N., Tranberg, R., Zugner, R., Alkema, K., Beckung, E.: Muscle strength training to improve gait function in children with cerebral palsy. Dev. Med. Child Neurol. 50, 759–764 (2008)CrossRefGoogle Scholar
  11. 11.
    Chen, C.L., Hong, W.H., Cheng, H.Y.K., Liaw, M.Y., Chung, C.Y., Chen, C.Y.: Muscle strength enhancement following home-based virtual cycling training in ambulatory children with cerebral palsy. Res. Dev. Disabil. 33(4), 1087–1094 (2012)CrossRefGoogle Scholar
  12. 12.
    Damiano, D.L., Stanley, C.J., Ohlrich, L., Alter, K.E.: Task-specific and functional effects of speed-focused elliptical or motor-assisted cycle training in children with bilateral cerebral palsy: randomized clinical trial. Neurorehab. Neural Repair 31(8), 736–745 (2017)CrossRefGoogle Scholar
  13. 13.
    Fowler, E., Knutson, L.M., Demuth, S.K., et al.: Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: a randomized control trial. Phys. Ther. 90, 367–381 (2010)CrossRefGoogle Scholar
  14. 14.
    Johnston, T.E., Lauer, R.T., Lee, S.C.: The effects of a shank guide on cycling biomechanics of an adolescent with cerebral palsy: a single-case study. Arch. Phys. Med. Rehabil. 89, 2025–2030 (2008)CrossRefGoogle Scholar
  15. 15.
    Demuth, S.K., Knutson, L.M., Fowler, E.G.: The PEDALS stationary cycling intervention and health-related quality of life in children with cerebral palsy: a randomized controlled trial. Dev. Med. Child Neurol. 54, 654–661 (2012)CrossRefGoogle Scholar
  16. 16.
    Chen, C.L., Chen, C.Y., Liaw, M.Y., et al.: Efficacy of homebased virtual cycling training on bone mineral density in ambulatory children with cerebral palsy. Osteo Int. 24, 1399–1406 (2013)CrossRefGoogle Scholar
  17. 17.
    Palisano, R., Rosenbaum, P., Walter, S., et al.: Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child Neurol. 39, 214–223 (1997)CrossRefGoogle Scholar
  18. 18.
    Mitchell, L., Ziviani, J., Oftedal, S., Boyd, R.: The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Dev. Med. Child Neurol. 54, 667–671 (2012)CrossRefGoogle Scholar
  19. 19.
    Snider, L., Majnemer, A., Darsaklis, V.: Virtual reality as a therapeutic modality for children with cerebral palsy. Dev. Neurorehabil. 13, 120–128 (2010)CrossRefGoogle Scholar
  20. 20.
    Levac, D.E., Galvin, J.: When is virtual reality “therapy”? Arch. Phys. Med. Rehabil. 94, 795–798 (2013)CrossRefGoogle Scholar
  21. 21.
    Sveistrup, H., Thornton, M., Brvanton, C., et al.: Outcomes of intervention programs using flatscreen virtual reality. Conf. Proc. IEEE Eng. Med. Biol. Soc. 7, 4856–4858 (2004)Google Scholar
  22. 22.
    Chen, Y.-P., Kang, L.-J., Chuang, T.-Y., Doong, J.-L., Lee, S.-J., Tsai, M.-W., Jeng, S.-F., Sung, W.-H.: Use of virtual reality to improve upper-extremity control in children with cerebral palsy: a single-subject design. Phys. Ther. 87(11), 1441–1457 (2007).  https://doi.org/10.2522/ptj.20060062CrossRefGoogle Scholar
  23. 23.
    Arlati, S., Zangiacomi, A., Greci, L., Di Santo, S.G., Franchini, F., Sacco, M.: Virtual environments for cognitive and physical training in elderly with mild cognitive impairment: a pilot study. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS, vol. 10325, pp. 86–106 (2017)Google Scholar
  24. 24.
    Wang, L., Fan, Y.: Research on interactive bicycle roaming system. In: 2014 12th International Conference on Signal Processing (ICSP), Hangzhou, pp. 1276–1280 (2014)Google Scholar
  25. 25.
    Mohammadi-Abdar, H., Ridgel, A.L., Discenzo, F.M., Loparo, K.A.: Design and development of a smart exercise bike for motor rehabilitation in individuals with Parkinson’s disease. IEEE/ASME Trans. Mech. 21(3), 1650–1658 (2016)CrossRefGoogle Scholar
  26. 26.
    Shah, N., Basteris, A., Amirabdollahian, F.: Design parameters in multimodal games for rehabilitation. Games Health Res. Dev. Clin. Appl. 3(1), 13–20 (2014)CrossRefGoogle Scholar
  27. 27.
    Gil-Gómez, J.A., Gil-Gómez, H., Lozano-Quilis, J.A., Manzano-Hernández, P., Albiol-Pérez, S., Aula-Valero, C.: SEQ: suitability evaluation questionnaire for virtual rehabilitation systems application in a virtual rehabilitation system for balance rehabilitation. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, pp. 335–338 (2013)Google Scholar
  28. 28.
    Fitzgerald, D., Kelly, D., Ward, T., Markham, C., Caulfield, B.: Usability evaluation of e-motion: a virtual rehabilitation system designed to demonstrate, instruct and monitor a therapeutic exercise programme. In: Virtual Rehabilitation, pp. 144–149 (2008)Google Scholar
  29. 29.
    Kalawsky, R.S.: VRUSE–a computerised diagnostic tool: for usability evaluation of virtual/synthetic environment systems. Appl. Ergon. 30, 11–25 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Edwin Pruna
    • 1
  • Ivón Escobar
    • 1
  • Washington Quevedo
    • 1
  • Andrés Acurio
    • 1
  • Marco Pilatásig
    • 1
  • Luis Mena
    • 1
  • José Bucheli
    • 1
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquiEcuador

Personalised recommendations