Advertisement

StratVision - A Framework for Strategic Vision Formalization

  • Luis Carlos Ferreira Bueno
  • Bruno Muller
  • Alexandre Ibrahim Direne
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)

Abstract

New concepts and software tools for supporting the acquisition of strategical skills in heuristic games are described. The formal authoring of patterns of Chess is presented as a key element that underlies human-like style of playing and as a meta-cognitive task for learners and grand masters to reflect about patterns stored in their long term memory. Multiple external representations concepts are used in the design of the environment. Also, few past works have been found in the scientific literature about applying knowledge, at a strategical vision level, to game engines. Such concepts can be applied to administration sciences and medicine diseases diagnoses. Finally, future research perspectives are discussed.

Keywords

Strategic vision Pattern recognition Educational games AI Multiple External Representations 

References

  1. 1.
    Ainsworth, S.: The functions of multiple representations. Comput. Educ. 33, 131–152 (1999).  https://doi.org/10.1016/S0360-1315(99)00029-9CrossRefGoogle Scholar
  2. 2.
    Akl, S.G., Newborn, M.M.: The principal continuation and the killer heuristic. In: Proceedings of the ACM Annual Conference, pp. 466–473 (1977).  https://doi.org/10.1145/800179.810240
  3. 3.
    Bratko, I., Kopec, D., Michie, D.: Pattern-based representation of chess end-game knowledge. Comput. J. 21, 149–153 (1978).  https://doi.org/10.1093/comjnl/21.2.149. URL: \(<\)GotoISI\(>\)://WOS:A1978FC08600010CrossRefGoogle Scholar
  4. 4.
    Chase, W.G., Simon, H.A.: Perception in chess. Cogn. Psychol. 4(1), 55–81 (1973).  https://doi.org/10.1016/0010-0285(73)90004-2CrossRefGoogle Scholar
  5. 5.
    Feitosa, A., Direne, A., Silva, F., Bona, L., da Silva, W.: Simulated competitions to aid tactical skill acquisition. In: Proceedings of the 2013 Winter Simulation Conference - WSC 2013, Washington - EUA, vol. 1, pp. 3588–3599. Simulation Society, Catonsville (2013)Google Scholar
  6. 6.
    Ferrari, V., Didierjean, A., Marmèche, E.: Dynamic perception in chess. Q. J. Exp. Psychol. 59(2), 397–410 (2006).  https://doi.org/10.1080/17470210500151428CrossRefGoogle Scholar
  7. 7.
    Finkelstein, L., Markovitch, S.: Learning to play chess selectively by acquiring move patterns. ICCA J. 21, 100–119 (1998).  https://doi.org/10.3233/ICG-1998-21204. URL: \(<\)GotoISI\(>\)://000075068900004CrossRefGoogle Scholar
  8. 8.
    Herbst, M.: Chess metaphors: artificial intelligence and the human mind. Eur. Legacy 20(7), 787–789 (2015).  https://doi.org/10.1080/10848770.2015.1054189. http://www.tandfonline.com/doi/full/10.1080/10848770.2015.1054189CrossRefGoogle Scholar
  9. 9.
    Kaindl, H.: Positional long range planning computer chess. Adv. Comput. Chess 3, 145–168 (1982)CrossRefGoogle Scholar
  10. 10.
    Kurzweil, R.: How to Create a Mind: The Secret of Human Thought Revealed. Penguin Books, New York (2013)Google Scholar
  11. 11.
    Lasker, G.E.: Application of sequential pattern-recognition technique to medical diagnostics. Int. J. Biomed. Comput. 1(3), 173–186 (1970).  https://doi.org/10.1016/0020-7101(70)90034-6. http://www.sciencedirect.com/science/article/pii/0020710170900346CrossRefGoogle Scholar
  12. 12.
    Levinson, R., Snyder, R.: Adaptive pattern-oriented chess. In: AAAI 1991 Proceedings, Anaheim, California, pp. 601–606 (1991)CrossRefGoogle Scholar
  13. 13.
    Linhares, A., Brum, P.: Understanding our understanding of strategic scenarios: what role do chunks play? Cogn. Sci. 31(6), 989–1007 (2007).  https://doi.org/10.1080/03640210701703725CrossRefGoogle Scholar
  14. 14.
    Newell, A., Shaw, J.C., Simon, H.A.: Chess-playing programs and the problem of complexity. IBM J. Res. Dev. 2(4), 320–335 (1958).  https://doi.org/10.1147/rd.24.0320MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pitrat, J.: A chess combination program which uses plan. Artif. Intell. 8, 275–321 (1977)CrossRefGoogle Scholar
  16. 16.
    van Reek, J., Uiterwijk, J., van den Herik, H.J.: Planning a strategy in chess. ICCA J. 21, 183–192 (1998).  https://doi.org/10.3233/ICG-1998-21305. URL: \(<\)GotoISI\(>\)://000076336400005
  17. 17.
    Simon, H.A.: The structure of ill structured problems. Artif. Intell. 4(3–4), 181–201 (1973).  https://doi.org/10.1016/0004-3702(73)90011-8CrossRefGoogle Scholar
  18. 18.
    Tadepalli, P.: Lazy explanation-based learning: a solution to the intractable theory problem. In: 1st International Joint Conference on Artificial Intelligence, pp. 694–700. Morgan Kaufmann Publishers (1989)Google Scholar
  19. 19.
    Von Neumann, J., Morgenstern, O.: The Theory of Games and Economic Behavior, 3rd edn. Princeton, Hoboken (1990)zbMATHGoogle Scholar
  20. 20.
    Wilkins, D.: Using patterns and plans in chess. In: Levy, D. (ed.) Computer Chess Compendium, pp. 233–257. Springer, New York (1980).  https://doi.org/10.1007/978-1-4757-1968-0_23CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luis Carlos Ferreira Bueno
    • 1
  • Bruno Muller
    • 2
  • Alexandre Ibrahim Direne
    • 2
  1. 1.Universidade Tecnolgica Federal do ParanaPato BrancoBrazil
  2. 2.PPGINFUniversidade Federal do ParanaCuritibaBrazil

Personalised recommendations