Sorting Fused Images for Multi-time Analysis of the Area Surrounding the Headwaters of the Meta River

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)

Abstract

This paper focuses on the process of theme-sorting Landsat images that have been enhanced by means of multispectral-panchromatic fusion. In addition to the assessment of the fusion methodologies, the paper also highlights the changes that have occurred in the area surrounding the headwaters of the Meta River during the last 16 years, near the municipality of Puerto López (Meta – Colombia). To carry out the fusion process, the Wavelet transform was used. The transform captures suitable information about spatial details of a panchromatic image and integrates the resulting image into the multispectral bands. Decision trees were used to classify the set of fused images. Classification with decision trees was based on differential discrimination of the spectral ranges for each of the coverage areas associated to multi-spectral bands. The present study delivers five theme maps showing the changes that have been occurred in related areas which reach a precision in the classification of 93.01% for the fused image in comparison of 74.08% obtained for the image without fusion.

Keywords

Image fusion Wavelet Classification Meta river Coverage area 

References

  1. 1.
    González-Audícana, M., García, R., Seco, A.: Fusión de imágenes multiespectrales y pancromáticas: nuevas alternativas metodológicas basadas en las transformaciones wavelet discretas empleando el algoritmo de Mallat. Revista de Teledetección. 18, 63–73 (2002)Google Scholar
  2. 2.
    Medina, R.J., Ruiz, C.P., Joyanes, L.: Two-dimensional fast Haar Wavelet transform for satellite-image fusión. J. Appl. Remote Sens. 7(1), 073698 (2013)CrossRefGoogle Scholar
  3. 3.
    Chuvieco, E.: Teledetección Ambiental: la observación de la tierra desde el espacio. Barcelona, Ariel, España (2002)Google Scholar
  4. 4.
    Scanvic, J.Y.: Teledetección aplicada: cartografía, geología estructural, exploración minera, medio ambiente, etc. Paraninfo (1989)Google Scholar
  5. 5.
    Lizarazo, I.: Clasificación de la cobertura y del uso del suelo urbano usando imágenes de satélite y algoritmos supervisados de Inteligencia Artificial, Ud Geomatica (2), 4–18 (2008)Google Scholar
  6. 6.
    Tso, B., Mather, P.M.: Classification Methods for Remotely Sensed Data. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  7. 7.
    Lillesand, T.M., Kiefer, R.W., Chipman, J.: Remote Sensing and Image Interpretation. John Wiley & Sons, New York (2011)Google Scholar
  8. 8.
    Medina, R.J., Lizarazo, I.: Fusión de imágenes satelitales utilizando la transformada de Wavelet. Universidad Distrital Francisco José de Caldas (2004)Google Scholar
  9. 9.
    Chuvieco, E.: Fundamentos de Teledetección Espacial. Estudios Geográficos 59 (2000)Google Scholar
  10. 10.
    Wald, L.: Data fusion, Definitions and architectures: fusion of images of different spatial resolutions. Presses des MINES (2002)Google Scholar
  11. 11.
    Vaiopoulo, A.D.: Developing Matlab scripts for image analysis and quality assessment. In: Proceedings of the SPIE, vol. 8181, no. 1, p. 12 (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diego Soler
    • 1
  • Harold De La Cruz
    • 1
  • Javier Medina
    • 1
  1. 1.Universidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations