Advertisement

Indoor Location Using Bluetooth Low Energy Beacons

  • Ana Gomes
  • André Pinto
  • Christophe Soares
  • José M. Torres
  • Pedro Sobral
  • Rui S. Moreira
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)

Abstract

Location data plays an important role in several applications embedded in our digital living. These applications, usually, take advantage of Global Positioning System (GPS). However, GPS is not targeted for indoor location, therefore this paper presents an alternative system, based on Bluetooth Low Energy (BLE) beacons that together with bluetooth-enabled Smartphones, allows the development of low cost and accurate location-aware applications for indoor scenarios. The paper describes the challenges associated with the system deployment and presents algorithms to improve the distance estimation process as the user moves around the smart space. The evaluation performed shows that this approach has good results on noise reduction and movement adaptation allowing a close tracking of the indoor user position.

Keywords

Bluetooth Low Energy Indoor location Beacon RSSI Fitting Calibration 

Notes

Acknowledgements

This work was partially funded by project QVida +: Estimação Contínua de Qualidade de Vida para Auxílio Eficaz à Decisã Clínica, NORTE-01-0247 - FEDER-003446, supported by Norte Portugal Regional Operational Programe (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and the strategic project LIACC (PEst-UID/CEC/00027/2013) and by Fundação Ensino e Cultura Fernando Pessoa.

References

  1. 1.
    Kaplan, E., Hegarty, C.: Understanding GPS Principles and Applications, Second edn. Artech House, Norwood (2006). ISBN-10: 1–58053-894-0Google Scholar
  2. 2.
    Ozsoy, K., Bozkurt, A., Tekin, I.: Indoor positioning based on global positioning system signals. Microwave Opt. Technol. Lett. 55, 1091–1097 (2013).  https://doi.org/10.1002/mop.27520CrossRefGoogle Scholar
  3. 3.
    Becvarik, M., Devetsikiotis, M.: Modeling of user quality of experience in location aware smart spaces. In: IEEE 2016 Digital Media Industry & Academic Forum (DMIAF), pp. 207–212 (2016).  https://doi.org/10.1109/DMIAF.2016.7574934
  4. 4.
    Namiot, D.: On indoor positioning. Int. J. Open Inf. Technol. 3, 23–26 (2015)Google Scholar
  5. 5.
    Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking system. In: Proceedings IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), pp. 775–784 (2000).  https://doi.org/10.1109/INFCOM.2000.832252
  6. 6.
    LaMarca, A., et al.: Place lab: device positioning using radio beacons in the wild. In: Gellersen, H.W., Want, R., Schmidt, A. (eds.) Pervasive Computing. Pervasive 2005. Lecture Notes in Computer Science, vol. 3468. Springer, Heidelberg (2005).  https://doi.org/10.1007/11428572_8Google Scholar
  7. 7.
    Bai, Y.B., Wu, S., Wu, H.R., Zhang, K.: Overview of RFID-based indoor positioning technology. In: GSR2012, vol. 1328 (2012). CEUR-WS.org. ISBN 978-0-9872527-1-5Google Scholar
  8. 8.
    Bouet, M., dos Santos, A.L.: RFID tags: positioning principles and localization techniques. In: IEEE 2008 1st IFIP Wireless Days, pp. 1–5 (2008).  https://doi.org/10.1109/WD.2008.4812905. ISBN 978-1-4244-2828-1
  9. 9.
    Yang, C., Shao, H.: WiFi-based indoor positioning. IEEE Commun. Mag. 53(3), 150–157 (2015).  https://doi.org/10.1109/MCOM.2015.7060497CrossRefGoogle Scholar
  10. 10.
    Galvan, C.E., Galvan-Tejada, I., Sandoval, E.I., Brena, R.: Wifi Bluetooth based combined positioning algorithm. Procedia Eng. 35, 101–108 (2012).  https://doi.org/10.1016/j.proeng.2012.04.170. Elsevier
  11. 11.
    Liu, H.-H., Yang, Y.-N.: WiFi-based indoor positioning for multi-floor environment. In: 2011 IEEE Region 10 Conference, TENCON 2011, pp. 697–601 (2011).  https://doi.org/10.1109/TENCON.2011.6129175. Procedia Eng
  12. 12.
    Subhan, F., Hasbullah, H., Rozyyev, A., Bakhsh, S.T.: Analysis of Bluetooth signal parameters for indoor positioning systems. In: IEEE 2012 International Conference on Computer & Information Science (ICCIS), pp. 784–789 (2012).  https://doi.org/10.1109/ICCISci.2012.6297133
  13. 13.
  14. 14.
    Gomez, C., Oller, J., Paradells, J.: Overview and evaluation of Bluetooth low energy: an emerging low-power wireless technology. Mol. Divers. Preserv. Int. Sens. J. 12, 11734–11753 (2012).  https://doi.org/10.3390/s120911734CrossRefGoogle Scholar
  15. 15.
    Faragher, R., Harle, R.: Location fingerprinting With Bluetooth low energy beacons. IEEE J. Sel. Areas Commun. 33, 2418–2428 (2015).  https://doi.org/10.1109/JSAC.2015.2430281CrossRefGoogle Scholar
  16. 16.
    Kontakt.io: Kontakt.io Web Page. https://kontakt.io/
  17. 17.
    Apple Inc.: Getting Started with iBeacon (2014). https://developer.apple.com/ibeacon/Getting-Started-with-iBeacon.pdf
  18. 18.
    SIlicon Labs: Developing Beacons with Bluetooth low energy (BLE) Technology (2017). http://pages.silabs.com/rs/634-SLU-379/images/Whitepaper-Developing-Beacons-with-Bluetooth-Low-Energy-Technology.pdf
  19. 19.
  20. 20.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ana Gomes
    • 1
  • André Pinto
    • 1
  • Christophe Soares
    • 1
    • 2
  • José M. Torres
    • 1
    • 2
  • Pedro Sobral
    • 1
    • 2
  • Rui S. Moreira
    • 1
    • 2
    • 3
  1. 1.ISUS UnitUniversidade Fernando PessoaPortoPortugal
  2. 2.LIACCUniversidade do PortoPortoPortugal
  3. 3.INESCTECPortoPortugal

Personalised recommendations