Advertisement

An Implementation on Matlab Software for Non-linear Controller Design Based on Linear Algebra for Quadruple Tank Process

  • Edison R. Sásig
  • César Naranjo
  • Edwin Pruna
  • William D. Chicaiza
  • Fernando A. Chicaiza
  • Christian P. Carvajal
  • Victor H. Andaluz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)

Abstract

This paper is focused on the design of a control algorithm based on linear algebra for multivariable systems and its application to control of a quadruple tank system. In order to design the controller, the system model is approximated by numerical methods and then a system of linear equations are solved by least square to obtain the optimal control actions. The strategy presented in this paper has the advantage of using discrete equations and therefore a direct implementation in most computer-driven systems is feasible. The simulation results developed on Matlab software shows the effective of the proposed method.

Keywords

Quadruple tank system Control system design Non-linear process Multivariable control Linear algebra 

References

  1. 1.
    Prusty, S.B., Seshagiri, S., Pati, U.C., Mahapatra, K.: Sliding mode control of coupled tanks using conditional integrators. In: Control Conference (ICC), pp. 146–151. IEEE, Indian (2016)Google Scholar
  2. 2.
    Vhora, H., Patel, J.: Design of static and dynamic decoupler for coupled quadruple tank level system. Nirma Univ. J. Eng. Technol. 5, 8–12 (2017)Google Scholar
  3. 3.
    Turki, A., Said, S.H., M’Sahli, F.: Backstepping control for a quadruple tank process based on adaptive observer. In: 12th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 1–5. IEEE (2015)Google Scholar
  4. 4.
    Maxim, A., Ionescu, C., De Keyser, R.: Modelling and identification of a coupled sextuple water tank system. In: IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1–6. IEEE (2016)Google Scholar
  5. 5.
    Maxim, A., Ionescu, C.M., Copot, C., De Keyser, R., Lazar, C.: Multivariable model-based control strategies for level control in a quadruple tank process. In: 17th International Conference on System Theory, Control and Computing (ICSTCC), pp. 343–348. IEEE (2013)Google Scholar
  6. 6.
    Raj, R., Deepa, S.: Modeling and implementation of various controllers used for Quadruple-Tank. In: International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–5. IEEE (2016)Google Scholar
  7. 7.
    Yu, S., Wang, Y., Wang, J., Chen, H.: Constrained output feedback H∞ control of a four-tank system. In: IEEE International Conference on Mechatronics and Automation (ICMA), pp. 2048–2053. IEEE (2016)Google Scholar
  8. 8.
    Azizi, A., Babazadeh, R., Ghiasi, A.: A new combined robust controller using sliding mode and feedback linearization with NDO observer proposed for minimum phase quadruple tank process. In: 4th International Conference Control, Instrumentation, and Automation (ICCIA), pp. 35–41. IEEE (2016)Google Scholar
  9. 9.
    Zhao, T., Li, P., Cao, J.: Study of interval type-2 fuzzy controller for the twin-tank water level system. Chin. J. Chem. Eng. 20(6), 1102–1106 (2012)CrossRefGoogle Scholar
  10. 10.
    Precup, R., Tomescu, M., Preitl, S., Petriu, E., Fodor, J., Pozna, C.: Stability analysis and design of a class of MIMO fuzzy control systems. J. Intell. Fuzzy Syst. 25(1), 145–155 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Başçi, A., Derdiyok, A.: Implementation of an adaptive fuzzy compensator for coupled tank liquid level control system. Measurement 91, 12–18 (2016)CrossRefGoogle Scholar
  12. 12.
    Rómoli, S., Serrano, M., Ortiz, O., Vega, J., Scaglia, G.: Tracking control of concentration profiles in a fed-batch bioreactor using a linear algebra methodology. ISA Trans. 57, 162–171 (2015)CrossRefGoogle Scholar
  13. 13.
    Andaluz, V., Sásig, E., Chicaiza, W., Velasco, P.: Linear algebra applied to kinematic control of mobile manipulators. In: International Conference on Information Theoretic Security, pp. 297–306. Springer, Singapore (2017)Google Scholar
  14. 14.
    Andaluz, V., Sásig, E., Chicaiza, W., Velasco, P.: Control based on linear algebra for mobile manipulators. In: Computational Kinematics, pp. 79–86. Springer, Cham (2016)Google Scholar
  15. 15.
    Johansson, K.: The quadruple-tank process: a multivariable laboratory process with an adjustable zero. IEEE Trans. Control Syst. Technol. 8, 456–465 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Edison R. Sásig
    • 1
  • César Naranjo
    • 1
  • Edwin Pruna
    • 1
  • William D. Chicaiza
    • 1
  • Fernando A. Chicaiza
    • 1
  • Christian P. Carvajal
    • 1
  • Victor H. Andaluz
    • 1
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquíEcuador

Personalised recommendations