Didactic System for Process Control Learning: Case Study Flow Control

  • Edwin Pruna
  • Mauricio Rosero
  • Rai Pogo
  • Ivón Escobar
  • Julio Acosta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)


It is presented a didactic system for the process control learning, it is considered as a practical case the flow control; four stages are considered for the implementation. The first stage allows obtaining the mathematical model of the plant under test, the second stage allows the design of the PID control and selection of the tuning method, the third and fourth stages allow to implement the control designed to verify experimentally the response of the developed controls.


Ziegler and Nichols IAE Cohen-Coon PID controller Process control Engineering education 


  1. 1.
    Peixoto, D.C.C., Resende, R.F., Pádua, C.I.P.S.: An educational simulation model derived from academic and industrial experiences. In: 2013 IEEE Frontiers in Education Conference (FIE), Oklahoma City, OK, pp. 691–697 (2013)Google Scholar
  2. 2.
    Chao, Z., et al.: Automatic control process analysis of gas pressure in electrostatic discharge measurement system. In: 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), Hangzhou, pp. 202–205 (2015)Google Scholar
  3. 3.
    Sánchez, H., Vilanova, R., Arrieta, O.: Implementación de controladores PID: Equivalencia y Optimalidad. XXXV Jornadas de Automática, España, 1–6, Sep 2014Google Scholar
  4. 4.
    Park, C.M., Bajimaya, S.M., Park, S.C., Wang, G.N., Kwak, J.G., Han, K.H.: Development of virtual simulator for visual validation of PLC program. In: 2006 International Conference on Computational Intelligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA 2006), Sydney, NSW, pp. 32–32 (2006)Google Scholar
  5. 5.
    Pinto, V., Rafael, S., Martins, J.F.: PLC controlled industrial processes on-line simulator. In: 2007 IEEE International Symposium on Industrial Electronics, Vigo, pp. 2954–2957 (2007)Google Scholar
  6. 6.
    Rata, M., Rata, G.: Application with a XY-plotter controlled by PLC used in student laboratory works. In: 2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, pp. 117–120 (2015)Google Scholar
  7. 7.
    Palma, L.B., Rosas, J.A., Pecorelli, J., Gil, P.S.: Structured text simulator for PLC in learning environment. In: 2015 International Conference on Information Technology Based Higher Education and Training (ITHET), Lisbon, pp. 1–7 (2015)Google Scholar
  8. 8.
    Escobar, I., Pruna, E., Chang, O., Navas, A., Zambrano, J., Avila, G.: Implementation of a WirelessHART training system for upgrading industrial. IEEE Latin Am. Trans. 14(6), 2663–2668 (2016)CrossRefGoogle Scholar
  9. 9.
    Astrom, K.J., Hagglund, T.: PID controllers: theory, design and tuning, Instrument Society of America (1995)Google Scholar
  10. 10.
    Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME 64(11), 759–768 (1942)Google Scholar
  11. 11.
    Lopez, A.M., Miller, J.A., Smith, C.L., Murrill, P.W.: Tuning controllers with error-integral criteria instrumentation. Technology 14, 57–62 (1967)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Edwin Pruna
    • 1
  • Mauricio Rosero
    • 1
  • Rai Pogo
    • 1
  • Ivón Escobar
    • 1
  • Julio Acosta
    • 1
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquiEcuador

Personalised recommendations