Advertisement

Relationship Between Upper Arm Muscle Index and Upper Arm Dimensions in Blood Pressure Measurement in Symmetrical Upper Arms: Statistical and Classification and Regression Tree Analysis

  • Letícia Helena Januário
  • Alexandre Carlos Brandão Ramos
  • Paôla de Oliveira Souza
  • Rafael Duarte Coelho Santos
  • Helen Cristiny T. Couto Ribeiro
  • José Maria Parente de Oliveira
  • Hevilla Nobre Cezar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)

Abstract

Objective: to identify the influence of upper arm muscle index (AMI) and upper arm dimensions on the measurement of blood pressure (BP). Methodology: 489 university students were evaluated in Divinópolis, Brazil and data were collected on anthropometric and BP measurements and elaborated multiple linear regression and regression tree models using data mining techniques. Results: length arm (AL) and arm circumference (AC) showed positive correlation with systolic blood pressure (SBP) and diastolic blood pressure (DBP). The AMI presented positive correlation with SBP and negative correlation with DBP. The regression tree showed interactions between BP and AL, AC and AMI. Conclusion: BP values in the upper right upper arm were higher than in the left upper arm in population of healthy young adults. AL and AC were predictors of overestimation of indirect measurement of SBP and DBP. AMI overestimates SBP and underestimates DBP. There were interactions between arm dimensions and BP.

Keywords

Blood pressure measurement Blood pressure CART Body composition 

References

  1. 1.
    Teo, K., et al.: Prevalence of a healthy lifestyle among individuals with cardiovascular disease in high-, middle- and low-income countries the prospective urban rural epidemiology (PURE) study. JAMA 309(15), 1613–1621 (2013)CrossRefGoogle Scholar
  2. 2.
    Moreira, J.P.L., Moraes, J.R., Luiz, R.R.: Prevalence of self-reported systemic arterial hypertension in urban and rural environments in Brazil: a population-based study. Cad. Saúde Pública 29(1), 62–72 (2013)CrossRefGoogle Scholar
  3. 3.
    Zhou, B., et al.: Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 389(10064), 37–55 (2017)CrossRefGoogle Scholar
  4. 4.
    Kaczorowski, J., Dawes, M., Gelfer, M.: Measurement of blood pressure: New developments and challenges. BCMJ 54(8), 399–403 (2012)Google Scholar
  5. 5.
    Alpert, B.S., Quinn, D., Gallick, D.: Oscillometric blood pressure: a review for clinicians. J. Am. Soc Hypertens 8(12), 930–938 (2014)CrossRefGoogle Scholar
  6. 6.
    Forouzanfar, M., et al.: Oscillometric blood pressure estimation: past, present, and future. IEEE Rev. Biomed. Eng. 8, 44–63 (2015). Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/25993705CrossRefGoogle Scholar
  7. 7.
    Benmira, A., et al.: From korotkoff and marey to automatic non-invasive oscillometric blood pressure measurement: does easiness come with reliability? Expert Rev. Med. Devices 13(2), 179–189 (2016)CrossRefGoogle Scholar
  8. 8.
    Frisancho, A.R.: Anthropometric standards for the assessment of growth and nutritional status. The University of Michigan Press, Ann Arbor (1990)CrossRefGoogle Scholar
  9. 9.
    NAHNES – National Health and Nutrition Examination Survey. (2007). Anthropometry Procedures Manual. 65 p. (acesso em maio 2017). Disponível em: http://www.cdc.gov/nchs/data/nhanes/nhanes07-08/manual_an.pdf
  10. 10.
    WHO (World Health Organization). Global action plan for the prevention and control of noncommunicable diseases 2013–2020. (2013). (acesso em: 2016 nov). Disponível em. http://apps.who.int/iris/bitstream/10665/94384/1/9789241506236_eng.pdf?ua = 1
  11. 11.
    Sociedade Brasileira de Cardiologia: Departamento de Hipertensão Arterial. VII Diretrizes brasileiras de hipertensão. Rio de Janeiro. Arq Bras Cardiol, 107 (supl. 3) 1–83 (2016 Set)Google Scholar
  12. 12.
    Kim, K.B., et al.: Inter-arm differences in simultaneous blood pressure measurements in ambulatory patients without cardiovascular diseases. Korean J. Fam. Med. 34(2), 98–106 (2013)CrossRefGoogle Scholar
  13. 13.
    Fonseca-Reyes, S., Forsyth-MacQuarrie, A.M., García de Alba-García, J.E.: Simultaneous blood pressure measurement in both arms in hypertensive and nonhypertensive adult patients. Blood Press Monit. 17(4), 149–154 (2012)CrossRefGoogle Scholar
  14. 14.
    Johansson, J.K., Puukka, P.J., Jula, A.M.: Interarm blood pressure difference and target organ damage in the general population. J. Hypertens. 32(2), 260–266 (2014)CrossRefGoogle Scholar
  15. 15.
    Song, X., et al.: Association of simultaneously measured four-limb blood pressures with cardiovascular function: a cross-sectional study. Biomed Eng Online 15(Suppl2), 147 (2016)CrossRefGoogle Scholar
  16. 16.
    Her, A.Y., et al.: Association of inter-arm systolic blood pressure difference with coronary atherosclerotic disease burden using calcium scoring. Yonsei Med. J. 58(5), 954–958 (2017)CrossRefGoogle Scholar
  17. 17.
    Hirono, A., et al.: Development and validation of optimal cut-off value in inter-arm systolic. blood pressure difference for prediction of cardiovascular events. J. Cardiol. 71(1), 24–30 (2017). pii: S0914-5087(17)30197-1CrossRefGoogle Scholar
  18. 18.
    Farvid, M.S., et al.: Association of adiponectin and resistin with adipose tissue compartments, insulin resistance and dyslipidaemia. Diabetes Obes. Metab. 7(4), 406–413 (2005)CrossRefGoogle Scholar
  19. 19.
    Urbanchek, M.G., et al.: Specific force deficit in skeletal muscles of old rats is partially explained by the existence of denervated muscle fibers. J. Gerontol. A Biol. Sci. Med. Sci. 56(5), 191–197 (2001)CrossRefGoogle Scholar
  20. 20.
    Mendez, J., Keys, A.: Density and composition of mammalian muscle. Metabolism 9(2), 184–188 (1960)Google Scholar
  21. 21.
    Vaziri, Y., et al.: Lean Body Mass as a Predictive Value of Hypertension in Young Adults, in Ankara, Turkey. Iran. J. Public Health 44(12), 1643–1654 (2015)Google Scholar
  22. 22.
    Abdollahian, M.: The impact of body mass index on low birth weight. In: Third International Conference on information technology: new generations, pp. 567–572 (2013).  https://doi.org/10.1109/itng.2013.71
  23. 23.
    Uluaszek, S.J., Hennberg, M.: Results of epidemiological studies of blood pressure are biased by continuous variation in arm size related to body mass. Hum. Biol. 84(4), 437–444 (2012)CrossRefGoogle Scholar
  24. 24.
    Rosenthal, J.: Evaluación metodológica de la relación entre presión arterial sanguinea y pliegue cutáneo: un enfoque epidemiológico. Rev. Saúde Pública, São Paulo (Internet), 23(4) 322–335. (acesso em: 2017 Out 09). Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034-89101989000400008&lng=ptCrossRefGoogle Scholar
  25. 25.
    Kim, Y.H., So, W.Y.: A low arm and leg muscle mass to total body weight ratio is associated with an increased prevalence of metabolic syndrome: The Korea National Health and Nutrition Examination Survey 2010–2011. Technol. Health Carev. 24(5), 655–663 (2016)CrossRefGoogle Scholar
  26. 26.
    Barlin, J.N., et al.: Classification and Regression tree (CART) analysis of endometrial carcinoma: Seeing the forest for the trees. J. Gynecol. Oncol. 130, 452–456 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Letícia Helena Januário
    • 1
  • Alexandre Carlos Brandão Ramos
    • 2
  • Paôla de Oliveira Souza
    • 3
  • Rafael Duarte Coelho Santos
    • 4
  • Helen Cristiny T. Couto Ribeiro
    • 1
  • José Maria Parente de Oliveira
    • 3
  • Hevilla Nobre Cezar
    • 2
  1. 1.Campus Centro-oeste, Universidade Federal de São João del ReiDivinópolisBrazil
  2. 2.Instituto de Matemática e Computação, Universidade Federal de ItajubáItajubáBrazil
  3. 3.Instituto Tecnológico de AeronáuticaSão José dos CamposBrazil
  4. 4.Instituto Nacional Pesquisas EspaciaisSão José dos CamposBrazil

Personalised recommendations