Advertisement

Affective Evaluation of Educational Lexicon in Spanish for Learning Systems

  • Samantha Jiménez
  • Reyes Juárez-Ramírez
  • Víctor H. Castillo
  • Alan Ramírez-Noriega
  • Sergio Inzunza
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)

Abstract

In the last years, several educational systems integrate text-based affective feedback. However, the analysis of educational lexicon from the affective perspective is limited. Previous work classified words in three categories: positive, negative or neutral. For that reason, this work proposes the construction of an educational lexicon in the Spanish and the evaluation of its affectivity using the arousal-valence scale. The educational lexicon was setting up by the suggestions of 166 undergraduate students. Then another group of 185 undergraduate students evaluated each word/phrase in a valence and arousal scale. An analysis by student gender and personality was conducted. Also, a clusterization analysis was performed to categorize the words/phrases.

Notes

Acknowledgment

This research is supported by the Maestía y Doctorado en Ciencias e Ingeniería (MYDCI) program offerted by Facultad de Ciencias Químicas e Ingeniería attached to Universidad Autnoma de Baja California; and for the Consejo Nacional de Ciencia y Tecnologa (CONACYT) CVU 423373.

References

  1. 1.
    Baca-gómez, Y.R., Irazú, D., Farías, H., Rosso, P.: Impacto de la ironía en la minería de opiniones basada en un léxico afectivo 2014 (2015)Google Scholar
  2. 2.
    Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatr. 25(1), 49–59 (1994)CrossRefGoogle Scholar
  3. 3.
    Calvo, R.A., Mac, S.K.: Emotions in text: dimensional and cathegorical models. Int. J. Computat. Intell. 29(3), 527–543 (2012)CrossRefGoogle Scholar
  4. 4.
    Chen, Y.C.: An empirical examination of factors affecting college students’ proactive stickiness with a web-based English learning environment. Comput. Hum. Behav. 31, 159–171 (2014)CrossRefGoogle Scholar
  5. 5.
    Díaz Rangel, I., Sidorov, G., Suárez-Guerra, S.: Creación y Evaluación de un diccionario marcado emociones y ponderado para el español, pp. 1–23 (2014)Google Scholar
  6. 6.
    D’Mello, S.K., Graesser, A.: Language and discourse are powerful signals of student emotions during tutoring. IEEE Trans. Learn. Technol. 5(4), 304–317 (2012)CrossRefGoogle Scholar
  7. 7.
    Gazda, G.M.: Human Relations Development. Allyn & Bacon Inc., Boston (1973)Google Scholar
  8. 8.
    Hinojosa, J.A., Martínez-García, N., Villalba-García, C., Fernández-Folgueiras, U., Sánchez-Carmona, A., Pozo, M.A., Montoro, P.R.: Affective norms of 875 Spanish words for five discrete emotional categories and two emotional dimensions. Behav. Res. Methods 48(1), 1–13 (2015). http://link.springer.com/10.3758/s13428-015-0572-5Google Scholar
  9. 9.
    Jiménez, S., Juárez-Ramírez, R., Castillo, V., Ramírez-Noriega, A.: Integrating affective learning into intelligent tutoring systems. Univers. Access Inf. Soc. 1(1), 1–14 (2017)Google Scholar
  10. 10.
    Jiménez, S., Juárez-Ramírez, R., Navarro, R., Coronel, A., Castillo, V.H.: Architecting an intelligent tutoring system with an affective dialogue module. In: Juárez-Ramírez, R., Oktaba, H. (eds.) 2016 4th International Conference in Software Engineering Research and Innovation, Puebla, México, pp. 122–129 (2016)Google Scholar
  11. 11.
    Kuppens, P.: Individual differences in the relationship between pleasure and arousal. J. Res. Personal. 42(4), 1053–1059 (2008). http://www.sciencedirect.com/science/article/pii/S0092656607001365?via%3DihubCrossRefGoogle Scholar
  12. 12.
    Lischetzke, T., Eid, M.: Why extraverts are happier than introverts: the role of mood regulation. J. Personal. 74(4), 1127–1162 (2006). http://www.ncbi.nlm.nih.gov/pubmed/16787431, https://doi.org/10.1111/j.1467-6494.2006.00405.xCrossRefGoogle Scholar
  13. 13.
    Redondo, J., Fraga, I., Comesaña, M., Perea, M.: Estudio normativo del valor afectivo de 478 palabras españolas. Psicologica 26(2), 317–326 (2005)Google Scholar
  14. 14.
    Russell, J.: A circumplex model of affect. J. Personal. Soc. Psychol. 39(6), 1161–1178 (1980)CrossRefGoogle Scholar
  15. 15.
    Rusting, C.L., Larsen, R.J.: Moods as sources of stimulation: relationships between personality and desired mood states. Personal. Individ. Differ. 18(3), 321–329 (1995). http://www.sciencedirect.com/science/article/pii/019188699400157N?via%3DihubCrossRefGoogle Scholar
  16. 16.
    Schauenburg, G., Ambrasat, J., Schröder, T., von Scheve, C., Conrad, M.: Emotional connotations of words related to authority and community. Behav. Res. Methods 47(3), 720–735 (2015). http://www.ncbi.nlm.nih.gov/pubmed/24928263CrossRefGoogle Scholar
  17. 17.
    Syrdal, A.K., Conkie, A., Kim, Y.j., Beutnagel, M., Park, F.: Speech acts and dialog TTS. In: The Seventh ISCA Tutorial and Research Workshop on Speech Synthesis, pp. 179–183 (2010)Google Scholar
  18. 18.
    Warriner, A.B., Kuperman, V., Brysbaert, M.: Norms of valence, arousal, and dominance for 13,915 English lemmas. Behav. Res. Methods 45(4), 1191–1207 (2013). http://link.springer.com/10.3758/s13428-012-0314-xCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Samantha Jiménez
    • 1
  • Reyes Juárez-Ramírez
    • 1
  • Víctor H. Castillo
    • 2
  • Alan Ramírez-Noriega
    • 1
  • Sergio Inzunza
    • 1
  1. 1.Universidad Autónoma de Baja CaliforniaMexicaliMexico
  2. 2.Universidad de ColimaColimaMexico

Personalised recommendations