Video Analytics on a Mixed Network of Robust Cameras with Processing Capabilities

  • Juan Pablo D‘Amato
  • Alejandro Perez
  • Leonardo Dominguez
  • Aldo Rubiales
  • Rosana Barbuzza
  • Franco Stramana
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 745)


Public safety is, to a greater or lesser extent, a significant concern in most modern cities. In many of these cities, video surveillance is employed to prevent and deter crime, often building systems with hundreds of cameras and sensors. Such systems proved to be effective in crime fighting and prevention, but they have high bandwidth requirements in order to bring a real-time monitoring. In countryside areas, where only low speed connections are available, the installation of such systems is not suitable and a new approach is required.

In this context, this project proposes a platform based on open source libraries for video analysis techniques such as motion detection, object tracking, object classification on a low-bandwidth network.

The proposed architecture is open and scalable as a result of performing image processing on the camera. These platform runs on robust distributed smart cameras that are ready for being installed in hard places. The system is prepared to deal with energy power failures; in order to increase reliability.

This work describes the platform design, the smartCAM layout and components, the algorithms currently used for object tracking and classification, and exposes results regarding the efficiency of the solution.


Image processing Security Surveillance Embedded systems Digital government 



This project is based on the connectivity infrastructure provided by the ‘Universidad Nacional del Centro de la Prov. de Bs. As (UNCPBA)’. The current project has received subsidies from the ‘Comisión de Investigaciones Científicas’ of Argentina.


  1. 1.
    Carrión, F., Pontón, C., Armijos, B.: 120 Estrategias y 36 experiencias de seguridad ciudadana. Revista Latinoamericana de Estudios de Seguridad (2009)Google Scholar
  2. 2.
    Serby, D., Koller-Meier, E., Gool, L.: Probabilistic object tracking using multiple features. In: Proceedings of the 17th International Conference Pattern Recognition, ICPR 2004, vol 2, pp. 184–187 (2004)Google Scholar
  3. 3.
    Hall, D., Nascimento, J., Ribeiro, P.: Comparison of target detection algorithms using adaptive background models. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking, pp. 113–120. IEEE (2005)Google Scholar
  4. 4.
    Ojha, S., Sakhare, S.: Image processing techniques for object tracking in video surveillance - A survey. In: International Conference on Pervasive Computing, pp. 1–6 (2015)Google Scholar
  5. 5.
    Kim, J.S., Yeom, D.H., Joo, Y.H.: Fast and robust algorithm of tracking multiple moving objects for intelligent video surveillance systems. IEEE Trans. Consum. Electron. 57(3) (2011)CrossRefGoogle Scholar
  6. 6.
    Olivieri, D.N., Conde, I.G., Sobrino, X.A.V.: Eigenspace-based fall detection and activity recognition from motion templates and machine learning. Expert Syst. Appl. 39(5), 5935–5945 (2012)CrossRefGoogle Scholar
  7. 7.
    Gdanks: Review of existing smart video surveillance systems capable of being integrated with ADDPRIV project (2011)Google Scholar
  8. 8.
    Bramberger, M., Doblander, A., Maier, A., Rinner, B., Schwabach, H.: Distributed embedded smart cameras for surveillance applications. Computer 39(2), 68–75 (2006)CrossRefGoogle Scholar
  9. 9.
    Lin, C.F., Yuan, S.M., Leu, M.C., Tsai, C.T.: A framework for scalable cloud video recorder system in surveillance environment. In: 9th International Conference on Ubiquitous Intelligence & Computing/Autonomic & Trusted Computing (UIC/ATC), pp. 655–660. IEEE (2012)Google Scholar
  10. 10.
    Hassan, M.M., Hossain, M.A., Abdullah-Al-Wadud, M., Al-Mudaihesh, T., Alyahya, S., Alghamdi, A.: A scalable and elastic cloud-assisted publish/subscribe model for IPTV video surveillance system. Cluster Comput. 18(4), 1539–1548 (2015)CrossRefGoogle Scholar
  11. 11.
    Mahjoub, M., Mdhaffar, A., Halima, R.B., Jmaiel, M.: A comparative study of the current cloud computing technologies and offers. In: First International Symposium on Network Cloud Computing and Applications (NCCA), pp. 21–23, 131–134 (2011)Google Scholar
  12. 12.
    Bastiao Silva, L.A., Costa, C., Silva, A., Oliveira, J.L.: A PACS gateway to the cloud. In: 6th Iberian Conference on Information Systems and Technology (CISTI), pp. 1–6, 15–18 (2011)Google Scholar
  13. 13.
    Ahmed, S., Abdullah, A.: E-healthcare and data management services in a cloud. In: High Capacity Optical Networks and Enabling Technologies (HONET), pp. 248–252 (2011)Google Scholar
  14. 14.
    Agrawal, H., Mathialagan, C.S., Goyal, Y., Chavali, N., Banik, P., Mohapatra, A., Osman, A., Batra, D.: CloudCV: large scale distributed computer vision as a cloud service. In: Mobile Cloud Visual Media Computing, pp. 265–290. Springer, Berlin (2015)CrossRefGoogle Scholar
  15. 15.
    D’Amato, J.P., Dominguez, L., Perez, A., Rubiales, A.: Plataforma abierta de gestión de cámaras IP y aplicaciones móviles para la seguridad civil ciudadana. Revista Ibérica de Sistemas e Tecnologias de Inormaçao 20, 48–61 (2016)Google Scholar
  16. 16.
    Shaikh, S.H., Saeed, K., Chaki, N.: Moving Object Detection Using Background Subtraction. Springer, Berlin (2014)Google Scholar
  17. 17.
    Piccardi, M.: Background subtraction techniques: a review. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3099–3104. IEEE (2004)Google Scholar
  18. 18.
    Bouwmans, D., Porikli, F., Hoferlin, B., Vacavant, A.: Background Modeling and Foreground Detection for Video Surveillance. Chapman and Hall/CRC, London (2014)CrossRefGoogle Scholar
  19. 19.
    Kruegle, H.: CCTV Surveillance: Video Practices and Technology. Butterworth Heinemann, Oxford (2011)Google Scholar
  20. 20.
    Barbuzza, R., D’Amato J.P., Dominguez, L., Perez, A., Rubiales, A.: Un método para la sustracción de fondo en videos inestables. Mecánica Computacional, vol. XXXIV, pp. 3409–3417 (2016)Google Scholar
  21. 21.
    Rodrigues, L.M., Montez, C., Budke, G., Vasques, F., Portugal, P.: Estimating the lifetime of wireless sensor network nodes through the use of embedded analytical battery models. J. Sens. Actuator Netw. 6 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Juan Pablo D‘Amato
    • 1
    • 2
  • Alejandro Perez
    • 1
    • 3
  • Leonardo Dominguez
    • 1
    • 2
  • Aldo Rubiales
    • 1
    • 3
  • Rosana Barbuzza
    • 1
    • 3
  • Franco Stramana
    • 1
  1. 1.Instituto PLADEMA – UNCPBATandilArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasCiudad Autónoma de Buenos AiresArgentina
  3. 3.Comisión de Investigaciones CientíficasLa PlataArgentina

Personalised recommendations