An Evaluation of Data Model for NoSQL Document-Based Databases

  • Debora G. Reis
  • Fabio S. Gasparoni
  • Maristela Holanda
  • Marcio Victorino
  • Marcelo Ladeira
  • Edward O. Ribeiro
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 745)


NoSQL databases offer flexibility in the data model. The document-based databases may have some data models built with embedded documents, and others made with referenced documents. The challenge lies in choosing the structure of the data. This paper proposes a study to analyze if different data models can have an impact on the performance of database queries. To this end, we created three data models: embedded, referenced, and hybrid. We ran experiments on each data model in a MongoDB cluster, comparing the response time of 3 different queries in each model. Results showed a disparity in performance between the data models. We also evaluated the use of indexes in each data model. Results showed that, depending on the type of query and field searched some types of indexes presented higher performance compared to others. Additionally, we carried out an analysis of the space occupied on the storage disk. This analysis shows that the choice of model also affects disk space for storing data and indexes.


NoSQL Data modeling Performance Indexes MongoDB 


  1. 1.
    Kang, Y.S., Park, I.H., Rhee, J., Lee, Y.H.: MongoDB-based repository design for IoT-generated RFID sensor big data. IEEE Sens. J. 16, 485–497 (2016)CrossRefGoogle Scholar
  2. 2.
    Chickerur, S., Goudar, A., Kinnerkar, A.: Comparison of relational database with document-oriented database mongodb for big data applications. In: 8th International Conference on Advanced Software Engineering and Its Applications ASEA, pp. 41–47. IEEE (2015)Google Scholar
  3. 3.
    Li, Y., Manoharan, S.: A performance comparison of SQL and NoSQL databases. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing PACRIM 2013, 15–19 (2013)Google Scholar
  4. 4.
    Kanoje, S., Powar, V., Mukhopadhyay, D.: Using MongoDB for Social Networking Website. arXiv preprint: arXiv:1503.06548 (2015)
  5. 5.
    Alekseev, A.A., Osipova, V.V., Ivanov, M.A., Klimentov, A., Grigorieva, N.V., Nalamwar, H.S.: Efficient data management tools for the heterogeneous big data warehouse. Phys. Particles Nucl. Lett. 13, 689–692 (2016)CrossRefGoogle Scholar
  6. 6.
    Jiang, W., Zhang, L., Liao, X., Jin, H., Peng, Y.: A novel clustered MongoDB-based storage system for unstructured data with high availability. Computing 96, 455–478 (2014)CrossRefGoogle Scholar
  7. 7.
    Kanade, A., Gopal, A.: A novel approach of hybrid data model in MongoDB. IUP J. Comput. Sci. 9 (2015)Google Scholar
  8. 8.
    Xiang, L., Huang, J., Shao, X., Wang, D.: A MongoDB-based management of planar spatial data with a flattened R-tree. ISPRS - Int. J. Geo-Inf. 5 (2016)CrossRefGoogle Scholar
  9. 9.
    Banker, K.: MongoDB in Action. Manning Publications (2016)Google Scholar
  10. 10.
    Corbellini, A., Mateos, C., Zunino, A., Godoy, D., Schiaffino, S.: Persisting big-data: the NoSQL landscape. Inf, Syst (2017)Google Scholar
  11. 11.
    Vera, H., Wagner, B., Maristela, H., Valeria, G., Fernanda, H.: Data modeling for NoSQL document-oriented databases. In: CEUR Workshop Proceedings (2015)Google Scholar
  12. 12.
    Sadalage, P.J., Fowler, M.: NoSQL Distilled: a Brief Guide to the Emerging World of Polyglot Persistence. Pearson Education (2012)Google Scholar
  13. 13.
  14. 14.
    MongoDB, Inc.: The MongoDB 3.4 Manual. Accessed April 2017
  15. 15.
    Repository at GitHub (2017).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Debora G. Reis
    • 1
  • Fabio S. Gasparoni
    • 1
  • Maristela Holanda
    • 1
  • Marcio Victorino
    • 1
  • Marcelo Ladeira
    • 1
  • Edward O. Ribeiro
    • 1
  1. 1.University of Brasilia, UnBBrasíliaBrazil

Personalised recommendations