Machine Learning Based Sentiment Analysis on Spanish Financial Tweets

  • José Antonio García-Díaz
  • María Pilar Salas-Zárate
  • María Luisa Hernández-Alcaraz
  • Rafael Valencia-García
  • Juan Miguel Gómez-Berbís
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 745)


Nowadays, financial data on social networks play an important role to predict the stock market. However, the exponential growth of financial information on social networks such as Twitter has led to a need for new technologies that automatically collect and categorise large volumes of information in a fast and easy manner. The Natural Language Processing (NLP) and sentiment analysis areas can solve this problem. In this respect, we propose a supervised machine learning method to detect the polarity of financial tweets. The method employs a set of lexico-morphological and semantic features, which were extracted with UMTextStats tool. Furthermore, we have conducted a comparison of the performance of three classification algorithms (J48, BayesNet, and SMO). The results showed that SMO provides better results than BayesNet and J48 algorithms, obtaining an F-measure of 73.2%.


Sentiment analysis Financial domain Machine learning 



This work has been supported by the Spanish National Research Agency (AEI) and the European Regional Development Fund (FEDER/ERDF) through project KBS4FIA (TIN2016-76323-R).


  1. 1.
    Loughran, T., Mcdonald, B.: Textual analysis in accounting and finance: a survey. J. Account. Res. 54, 1187–1230 (2016)CrossRefGoogle Scholar
  2. 2.
    del Pilar Salas-Zarate, M., Valencia-García, R., Ruiz-Martínez, A., Colomo-Palacios, R.: Feature-based opinion mining in financial news: an ontology-driven approach. J. Inf. Sci. 43(4), 458–479 (2016). CrossRefGoogle Scholar
  3. 3.
    Tetlock, P.C.: Giving content to investor sentiment: the role of media in the stock market. J. Finance 62, 1139–1168 (2007)CrossRefGoogle Scholar
  4. 4.
    Azar, P.D.: Sentiment analysis in financial news (2009)Google Scholar
  5. 5.
    Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and sentiment analysis. IEEE Intell. Syst. 28, 15–21 (2013)CrossRefGoogle Scholar
  6. 6.
    Strapparava, C., Valitutti, A., et al.: WordNet affect: an affective extension of WordNet. In: LREC, pp. 1083–1086 (2004)Google Scholar
  7. 7.
    Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: LREC, pp. 2200–2204 (2010)Google Scholar
  8. 8.
    Cruz, N.P., Taboada, M., Mitkov, R.: A machine-learning approach to negation and speculation detection for sentiment analysis. J. Assoc. Inf. Sci. Technol. 67, 2118–2136 (2016)CrossRefGoogle Scholar
  9. 9.
    Montejo-Ráez, A., Martínez-Cámara, E., Martín-Valdivia, M.T., Ureña-López, L.A.: Ranked WordNet graph for sentiment polarity classification in Twitter. Comput. Speech Lang. 28, 93–107 (2014)CrossRefGoogle Scholar
  10. 10.
    He, Y., Zhoub, D.: Self-training from labeled features for sentiment analysis. Inf. Process. Manag. 47, 606–616 (2011)CrossRefGoogle Scholar
  11. 11.
    Li, X., Xie, H., Chen, L., Wang, J., Deng, X.: News impact on stock price return via sentiment analysis. Knowl.-Based Syst. 69, 14–23 (2014)CrossRefGoogle Scholar
  12. 12.
    Smailović, J., Grčar, M., Lavrač, N., Žnidaršič, M.: Stream-based active learning for sentiment analysis in the financial domain. Inf. Sci. 285, 181–203 (2014)CrossRefGoogle Scholar
  13. 13.
    Atzeni, M., Dridi, A., Reforgiato Recupero, D.: Fine-Grained Sentiment Analysis on Financial Microblogs and News Headlines. Presented at the 28 May 2017 (2017)CrossRefGoogle Scholar
  14. 14.
    Kordonis, J., Symeonidis, S., Arampatzis, A.: Stock price forecasting via sentiment analysis on Twitter. In: Proceedings of the 20th Pan-Hellenic Conference on Informatics - PCI 2016. pp. 1–6. ACM Press, New York (2016)Google Scholar
  15. 15.
    del Pilar Salas-Zarate, M., López-López, E., Valencia-García, R., Aussenac-Gilles, N., Almela, A., Alor-Hernández, G.: A study on LIWC categories for opinion mining in Spanish reviews. J. Inf. Sci. 40(6), 749–760 (2014)CrossRefGoogle Scholar
  16. 16.
    del Pilar Salas-Zarate, M., Paredes-Valverde, M.A., Rodriguez-García, M.Á., Valencia-García, R., Alor-Hernández, G.: Automatic detection of satire in Twitter: a psycholinguistic-based approach. Knowl.-Based Syst. 128, 20–33 (2017)CrossRefGoogle Scholar
  17. 17.
    Hsu, R., See, B., Wu, A.: Machine learning for sentiment analysis on the experience project (2010)Google Scholar
  18. 18.
    Balage Filho, P.P., Pardo, T.A.S., Aluísio, S.M.: An evaluation of the Brazilian Portuguese LIWC dictionary for sentiment analysis. In: Proceedings of the 9th Brazilian Symposium in Information and Human Language Technology (STIL), pp. 215–219 (2013)Google Scholar
  19. 19.
    Hutto, C.J., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Eighth International AAAI Conference of Weblogs Social Media (2014)Google Scholar
  20. 20.
    Bouckaert, R.R., Frank, E., Hall, M.A., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: WEKA—Experiences with a Java Open-Source Project. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  21. 21.
    del Pilar Salas-Zarate, M., Paredes-Valverde, M.A., Limon, J., Tlapa, D.A., Báez, Y.A.: Sentiment classification of Spanish reviews: an approach based on feature selection and machine learning methods. J. UCS 22(5), 691–708 (2016)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de InformáticaUniversidad de MurciaMurciaSpain
  2. 2.Division of Research and Postgraduate StudiesInstituto Tecnológico de OrizabaOrizabaMexico
  3. 3.Departamento de InformáticaUniversidad Carlos III de MadridMadridSpain

Personalised recommendations