Where to go in Brooklyn: NYC Mobility Patterns from Taxi Rides

  • Juan Carlos Garcia
  • Allan Avendaño
  • Carmen Vaca
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 745)


Urban centers attractive for local citizens commonly house local cuisine restaurants or commercial areas. Local authorities are interested in discovering pattern to explain why city residents go to different areas of the city at a given time of the day. We explore a massive dataset of taxi rides, 69 million records in New York city, to uncover attractive places for local residents when going to Brooklyn. First, we obtain the origin destination matrix for New York boroughs. Second, we apply a density based clustering algorithm to detect popular drop-off locations. Next, we automatically find the closest venue, using the Foursquare API, to the most popular destination in each cluster. Our methodology let us to uncover popular destinations in urban areas in any city for which taxi rides information is available.


Urban mobility Spatio-temporal data Clustering Points of interest 


  1. 1.
    Comito, C., Falcone, D., Talia, D.: Mining human mobility patterns from social geo-tagged data. Pervasive Mob. Comput. 33, 91–107 (2016)CrossRefGoogle Scholar
  2. 2.
    Corcoran, J., Li, T., Rohde, D., Charles-Edwards, E., Mateo-Babiano, D.: Spatio-temporal patterns of a public bicycle sharing program: the effect of weather and calendar events. J. Transp. Geogr. 41, 292–305 (2014)CrossRefGoogle Scholar
  3. 3.
    Ferreira, N., Poco, J., Vo, H.T., Freire, J., Silva, C.T.: Visual exploration of big spatio-temporal urban data : a study of New York City cab trips. IEEE Trans. Vis. Comput. Graph. 19(12), 2149–2158 (2013)CrossRefGoogle Scholar
  4. 4.
    Hong, S., Lee, K., Rhee, I.: STEP: a spatio-temporal mobility model for humans walks. In: 2010 IEEE 7th International Conference on Mobile Adhoc and Sensor Systems, MASS 2010, pp. 630–635 (2010)Google Scholar
  5. 5.
    Hoque, M.A., Hong, X., Dixon, B.: Analysis of mobility patterns for urban taxi cabs. In: 2012 International Conference on Computing, Networking and Communications, ICNC 2012, pp. 756–760 (2012)Google Scholar
  6. 6.
    Kumar, D., Wu, H., Lu, Y., Krishnaswamy, S., Palaniswami, M.: Understanding urban mobility via taxi trip clustering. In: Proceedings - IEEE International Conference on Mobile Data Management, July 2016, pp. 318–324 (2016)Google Scholar
  7. 7.
    Liang, X., Zheng, X., Lv, W., Zhu, T., Ke, X.: The scaling of human mobility by taxis is exponential. Phys. A Stat. Mech. Appl. 391(5), 2135–2144 (2012)CrossRefGoogle Scholar
  8. 8.
    Luo, F., Cao, G., Mulligan, K., Li, X.: Explore spatiotemporal and demographic characteristics of human mobility via Twitter: a case study of Chicago. Appl. Geogr. 70, 11–25 (2016)CrossRefGoogle Scholar
  9. 9.
    Nandan, N.: A grid-based approach for similarity mining of massive geospatial trajectories. In: Proceedings - 2014 IEEE International Conference on Computer and Information Technology, CIT 2014, pp. 765–768 (2014)Google Scholar
  10. 10.
    Ni, B., Shen, Q., Xx, J., Huamin, Q.: Spatio-temporal flow maps for visualizing movement and contact patterns. Vis. Inform. 1(1), 57–64 (2017)CrossRefGoogle Scholar
  11. 11.
    Sajana, T., Rani, C.M.S., Narayana, K.V.: A survey on clustering techniques for big data mining. J. Sci. Technol. 9(3), 1–12 (2016)Google Scholar
  12. 12.
    Sen, R., Quercia, D., Gummadi, K.P.: Scalable urban data collection from the web. In: ICWSM, pp. 683–686 (2016)Google Scholar
  13. 13.
    Song, C., Zehui, Q., Blumm, N., Barabasi, A.-L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wilmoth, J.: World population 2017.pdf. Technical report, Population Division, DESA, United Nations (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Juan Carlos Garcia
    • 1
    • 2
  • Allan Avendaño
    • 1
    • 2
  • Carmen Vaca
    • 1
    • 2
  1. 1.Facultad de Ingeniería en Electricidad y ComputaciónEscuela Superior Politcnica del Litoral, ESPOLGuayaquilEcuador
  2. 2.Universidad de GuayaquilGuayaquilEcuador

Personalised recommendations