GRAPHED: A Graph Description Diagram for Graph Databases

  • Gustavo Van Erven
  • Waldeyr Silva
  • Rommel Carvalho
  • Maristela Holanda
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 745)


Within recent years, graph database systems have become very popular and deployed mainly in situations where the relationship between data is significant, such as in social networks. Although they do not require a particular schema design, a data model contributes to their consistency. Designing diagrams is one approach to satisfying this demand for a conceptual data model. While researchers and companies have been developing concepts and notations for graph database modeling, their notations focus on their specific implementations. In this paper, we propose a diagram to address this lack of a generic and comprehensive notation for graph database modeling, called GRAPHED (Graph Description Diagram for Graph Databases). We verified the effectiveness and compatibility of GRAPHED in a case study in fraud identification in the Brazilian government.


Graph database Graph Database Model Diagram 



The authors thank Gilson Mendes, director of the Department of Research and Strategic Information (DIE), Brazilian Office of Ministry of Transparency, Supervision and Office of the General Comptroller (CGU), and University of Brasilia for their support in this work. Waldeyr Mendes C. da Silva kindly thanks CAPES for the scholarship and also to IFG.


  1. 1.
    Amann, B., Scholl, M.: Gram: a graph data model and query languages. In: Proceedings of the ACM Conference on Hypertext, pp. 201–211. ACM (1992)Google Scholar
  2. 2.
    Angles, R.: A comparison of current graph database models. In: 2012 IEEE 28th International Conference on Data Engineering Workshops (ICDEW), pp. 171–177 (2012)Google Scholar
  3. 3.
    Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1), 1–39 (2008)CrossRefGoogle Scholar
  4. 4.
    Angles, R., Prat-Pérez, A., Dominguez-Sal, D., Larriba-Pey, J.L.: Benchmarking database systems for social network applications. In: First International Workshop on Graph Data Management Experiences and Systems, GRADES 2013, pp. 15:1–15:7. ACM (2013)Google Scholar
  5. 5.
    Batra, S., Tyagi, C.: Comparative analysis of relational and graph databases. Int. J. Soft Comput. Eng. (IJSCE) 2(2), 509–512 (2012)Google Scholar
  6. 6.
    Chen, P.P.S.: The entity-relationship model–toward a unified view of data. ACM. Trans. Database Syst. 1(1), 9–36 (1976)CrossRefGoogle Scholar
  7. 7.
    Deo, N.: Graph Theory with Applications to Engineering and Computer Science (1994)Google Scholar
  8. 8.
    Ghrab, A., Romero, O., Skhiri, S., Vaisman, A., Zimányi, E.: Grad: On graph database modeling. arXiv preprint arXiv:1602.00503 (2016)
  9. 9.
    Gyssens, M., Paredaens, J., van Gucht, D.: A graph-oriented object database model. In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1990, pp. 417–424. ACM (1990)Google Scholar
  10. 10.
    Hecht, R., Jablonski, S.: NoSQL evaluation: a use case oriented survey. In: 2011 International Conference on Cloud and Service Computing (CSC), pp. 336–341 (2011)Google Scholar
  11. 11.
    Hidders, J., Paredaens, J.: Goal, a graph-based object and association language. In: Paredaens, J., Tenenbaum, L. (eds.) Advances in Database Systems. International Centre for Mechanical Sciences, vol. 347, pp. 247–265. Springer, Vienna (1994)CrossRefGoogle Scholar
  12. 12.
    Hidders, J.: Typing graph-manipulation operations. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) Database Theory - ICDT 2003. LNCS, vol. 2572, pp. 394–409. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Kaur, K., Rani, R.: Modeling and querying data in NoSQL databases, pp. 1–7. IEEE (2013)Google Scholar
  14. 14.
    Kuper, G.M., Vardi, M.Y.: The logical data model. ACM Trans. Database Syst. (TODS) 18(3), 379–413 (1993)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Levene, M., Loizou, G.: A graph-based data model and its ramifications. IEEE Trans. Knowl. Data Eng. 7(5), 809–823 (1995)CrossRefGoogle Scholar
  16. 16.
    Levene, M., Poulovassilis, A.: An object-oriented data model formalised through hypergraphs. Data Knowl. Eng. 6(3), 205–224 (1991)CrossRefGoogle Scholar
  17. 17.
    Mainguenaud, M., Simatic, X.T.: A data model to deal with multi-scaled networks. Comput. Environ. Urban Syst. 16(4), 281–288 (1992)CrossRefGoogle Scholar
  18. 18.
    Miles, R., Hamilton, K.: Learning UML 2.0, 1st edn. O’Reilly Media (2006)Google Scholar
  19. 19.
    Ruflin, N., Burkhart, H., Rizzotti, S.: Social-data storage-systems. In: Databases and Social Networks, DBSocial 2011, pp. 7–12. ACM (2011)Google Scholar
  20. 20.
    Srinivasa, S.: Data, storage and index models for graph databases. In: Sakr, S., Pardede, E. (eds.) Graph Data Management, pp. 47–70. IGI Global (2011)Google Scholar
  21. 21.
    Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison of a graph database and a relational database: a data provenance perspective. In: Proceedings of the 48th Annual Southeast Regional Conference, ACM SE 2010, pp. 42:1–42:6. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gustavo Van Erven
    • 1
    • 2
  • Waldeyr Silva
    • 2
    • 3
  • Rommel Carvalho
    • 2
  • Maristela Holanda
    • 2
  1. 1.CGU, Ministry of Transparency and General Comptroller of the UnionBrasíliaBrazil
  2. 2.UnB, University of BrasíliaBrasíliaBrazil
  3. 3.IFG, Federal Institute of GoiásFormosaBrazil

Personalised recommendations