Advertisement

Time Difference of Arrival Enhancement with Ray Tracing Simulation

  • Marcelo N. de Sousa
  • Eduardo F. S. Corrêa
  • Reiner S. Thomä
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 745)

Abstract

A Hybrid technique is proposed to improve the Time Difference of Arrival (TDoA) Localization systems in Non-line of Sight situation. A Ray tracing simulation tool is used to extract the time of arrival difference characteristic from the environment and binding with the TDoA a multilateration sensor scheme to estimate the position of an electromagnetic emitter. The idea was to improve the TDoA sensor performance to overcome multipath imprecision typical in the urban environment, where different rays are sum up at each sensor increasing the error position. The technique proposed uses time Channel Impulse Response estimation and a Ray Tracing propagation tool to build a geographic time difference fingerprint that is used to enhance the performance. A measurement campaign was done to validate the technique and showed an enhancement in the localization precision.

Keywords

Source localization Time Difference of Arrival Multipath exploitation Ray tracing simulation 

References

  1. 1.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981).  https://doi.org/10.1016/0022-2836(81)90087-5CrossRefGoogle Scholar
  2. 2.
    May, P., Ehrlich, H.-C., Steinke, T.: ZIB structure prediction pipeline: composing a complex biological workflow through web services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148–1158. Springer, Heidelberg (2006).  https://doi.org/10.1007/11823285_121CrossRefGoogle Scholar
  3. 3.
    Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)Google Scholar
  4. 4.
    Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services for distributed resource sharing. In: 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181–184. IEEE Press, New York (2001).  https://doi.org/10.1109/HPDC.2001.945188
  5. 5.
    Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: an open grid services architecture for distributed systems integration. Technical report, Global Grid Forum (2002)Google Scholar
  6. 6.
    National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov
  7. 7.
    Shikur, B.Y., Weber, T.: TDOA/AOD/AOA localization in NLOS environments. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6518–6522 (2014)Google Scholar
  8. 8.
    Guvenc, I., Chong, C.C.: A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Commun. Surv. Tutor. 11(3), 107–124 (2009)CrossRefGoogle Scholar
  9. 9.
    Wylie, M.P., Holtzman, J.: The non-line of sight problem in mobile location estimation. In: Proceedings of ICUPC - 5th International Conference on Universal Personal Communications, vol. 2, pp. 827–831 (1996)Google Scholar
  10. 10.
    Chan, Y.-T., Tsui, W.-Y., So, H.-C., Ching, P.: Time-of-arrival based localization under NLOS conditions. IEEE Trans. Veh. Technol. 55(1), 17–24 (2006)CrossRefGoogle Scholar
  11. 11.
    Phelan, B.R., Lenzing, E.H., Narayanan, R.M.: Source localization using unique characterizations of multipath propagation in an urban environment. In: IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM 2012), pp. 189–192 (2012)Google Scholar
  12. 12.
    Schmitz, J., Schröder, F., Mathar, R.: TDOA fingerprinting for localization in non-line-of-sight and multipath environments. In: International Symposium on Antennas and Propagation (ISAP 2015), pp. 1–4 (2015)Google Scholar
  13. 13.
    Kolb, D., Warzügel, S., Schramm, J.: Hardware-reduced system for TDOA-locating of radio frequency emitters, EP Patent App,20,130,160,415, Google PatentsGoogle Scholar
  14. 14.
    Baoping, Q., Gang, S., Zhanrong, J.: An improved TDOA location algorithm in LOS environment. In: 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, vol. 1, pp. 70–73 (2012)Google Scholar
  15. 15.
    Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Englewood Cliffs (1993). ISBN 10:0133457117zbMATHGoogle Scholar
  16. 16.
    Heddergott, R., Leuthold, P.E.: An extension of stochastic radio channel modeling considering propagation environments with clustered multipath components. IEEE Trans. Antennas Propag. 51(8), 1729–1739 (2003)CrossRefGoogle Scholar
  17. 17.
    Johnson, W.J.D., Weller, T., Gong, X.: Pactive sensors for security applications. In: WAMICON 2013, pp. 1–4 (2013)Google Scholar
  18. 18.
    Pralon, M.G., Galdo, G.D., Landmann, M., Hein, M.A., Thomä, R.S.: Suitability of compact antenna arrays for direction of arrival estimation. IEEE Trans. Antennas Propag. PP(99), 1 (2017)Google Scholar
  19. 19.
    Al-Jazzar, S., Caffery, J.: ML and Bayesian TOA location estimators for NLOS environments. In: Proceedings IEEE 56th Vehicular Technology Conference, vol. 2, pp. 1178–1181 (2002)Google Scholar
  20. 20.
    Kwon, B., Park, Y., Park, Y.S.: Analysis of the GCC-PHAT technique for multiple sources. In: ICCAS 2010, pp. 2070–2073 (2010)Google Scholar
  21. 21.
    Miao, H., Yu, K., Juntti, M.J.: Positioning for NLOS propagation: algorithm derivations and Cramer-Rao bound. IEEE Trans. Veh. Technol. 56(5), 2568–2580 (2007)CrossRefGoogle Scholar
  22. 22.
    Yin, J., Wan, Q., Yang, S., Ho, K.C.: A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Process. Lett. 23(1), 144–148 (2016)CrossRefGoogle Scholar
  23. 23.
    Li, W.C., Wei, P., Xiao, X.C.: TDOA and T2/R radar based target location method and performance analysis. In: IEE Proceedings - Radar, Sonar and Navigation, vol. 152, no. 3, pp. 219–223, 3 June 2005CrossRefGoogle Scholar
  24. 24.
    Costanzo, S., Di Massa, G., Costanzo, A., Borgia, A., Raffo, A., Viggiani, G., Versace, P.: Software-defined radar system for landslides monitoring. In: New Advances in Information Systems and Technologies, pp. 325–331 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marcelo N. de Sousa
    • 1
  • Eduardo F. S. Corrêa
    • 1
  • Reiner S. Thomä
    • 1
  1. 1.Electronic Measurement Research LaboratoryIlmenau University of TechnologyIlmenauGermany

Personalised recommendations