Understanding the Adoption of Business Analytics and Intelligence

  • Frederico Cruz-Jesus
  • Tiago Oliveira
  • Mijail Naranjo
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 745)

Abstract

Our work addresses the factors that influence the adoption of business analytics and intelligence (BAI) among firms. Grounded on some of the most prominent adoption models for technological innovations, we developed a conceptual model especially suited for BAI. Based on this we propose an instrument in which relevant hypotheses will be derived and tested by means of statistical analysis. We hope that the findings derived from our analysis may offer important insights for practitioners and researchers regarding the drivers that lead to BAI adoption in firms. Although other studies have already focused on the adoption of technological innovations by firms, research on BAI is scarce, hence the relevancy of our research.

Keywords

Business analytics and intelligence IT adoption Diffusion of Innovations Technology-organization-environment Institutional theory 

Notes

Acknowledgment

Mijail Naranjo Zolotov gratefully acknowledge the support of Geo-informatics: Enabling Open Cities (GEO-C), the project funded by the European Commission within the Marie Skłodowska-Curie Actions, International Training Networks (ITN), and European Joint Doctorates (EJD). Grant Agreement number 642332 - GEO-C - H2020-MSCA-ITN-2014.

References

  1. 1.
    Morabito, V.: Big Data and Analytics Strategic and Organizational Impacts. Springer International Publishing, Cham (2015).  https://doi.org/10.1007/978-3-319-10665-6CrossRefGoogle Scholar
  2. 2.
    Rogers, E.M.: Diffusion of Innovations, 5th edn. Free Press, New York (2005)Google Scholar
  3. 3.
    Tornatzky, L.G., Fleischer, M.: The Processes of Technological Innovation, p. 301. Lexington Books, Lexington (1990)Google Scholar
  4. 4.
    DiMaggio, P.J., Powell, W.W.: The iron cage revisited - institutional isomorphism and collective rationality in organizational fields. In: Advances in Strategic Management, vol. 17, pp. 143–166 (2000). Reprinted from the Am. Soc. Assoc. 48, 147–160 (1983)Google Scholar
  5. 5.
    Bose, I.: Deciding the financial health of dot-coms using rough sets. Inf. Manag. 43(7), 835–846 (2006)CrossRefGoogle Scholar
  6. 6.
    Côrte-Real, N., Oliveira, T., Ruivo, P.: Assessing business value of big data analytics in European firms. J. Bus. Res. 70(Supplement C), 379–390 (2017)CrossRefGoogle Scholar
  7. 7.
    Jagadish, H.V., et al.: Big data and its technical challenges. Commun. ACM 57(7), 86–94 (2014)CrossRefGoogle Scholar
  8. 8.
    Wang, Y., et al.: An integrated big data analytics-enabled transformation model: application to health care. Inf. Manag. 55, 65–79 (2017)Google Scholar
  9. 9.
    Davenport, T.H.: Competing on analytics. Harv. Bus. Rev. 84, 1–12 (2006)Google Scholar
  10. 10.
    Vidgen, R., Shaw, S., Grant, D.B.: Management challenges in creating value from business analytics. Eur. Jo. Oper. Res. 261(2), 626–639 (2017)CrossRefGoogle Scholar
  11. 11.
    Anderson-Lehman, R., et al.: Continental airlines flies high with real-time business intelligence. MIS Q. Exec. 3(4), 163–176 (2004)Google Scholar
  12. 12.
    Cooper, B.L., et al.: Data warehousing supports corporate strategy at First American Corporation. MIS Q. 24(4), 547–567 (2000)CrossRefGoogle Scholar
  13. 13.
    Jourdan, Z., Rainer, R.K., Marshall, T.E.: Business intelligence: an analysis of the literature. Inf. Syst. Manag. 25(2), 121–131 (2008)CrossRefGoogle Scholar
  14. 14.
    Oliveira, T., Martins, M.F.: Information technology adoption models at firm level: review of literature. Electron. J. Inf. Syst. Eval. 14(3), 123–134 (2011)Google Scholar
  15. 15.
    Hsu, P.-F., Kraemer, K.L., Dunkle, D.: Determinants of e-business use in U.S. firms. Int. J. Electron. Commer. 10(4), 9–45 (2006)CrossRefGoogle Scholar
  16. 16.
    Scott, W.R.: Institutions and Organizations, 2nd edn. Sage Publications, Thousand Oaks (2001)Google Scholar
  17. 17.
    Christensen, S., Scott, W.R. (eds.): The Institutional Construction of Organizations: International and Longitudinal Studies. Sage Publications, Thousand Oaks (1995)Google Scholar
  18. 18.
    Powell, W.W., DiMaggio, P.: The New Institutionalism in Organizational Analysis. University of Chicago Press, Chicago (1991)Google Scholar
  19. 19.
    Teo, H.H., Wei, K.K., Benbasat, I.: Predicting intention to adopt interorganizational linkages: an institutional perspective. MIS Q. 27(1), 19–49 (2003)CrossRefGoogle Scholar
  20. 20.
    Haveman, H.A.: Follow the leader - mimetic isomorphism and entry into new markets. Adm. Sci. Quar. 38(4), 593–627 (1993)CrossRefGoogle Scholar
  21. 21.
    Soares-Aguiar, A., Palma-dos-Reis, A.: Why do firms adopt e-procurement systems? Using logistic regression to empirically test a conceptual model. IEEE Trans. Eng. Manag. 55(1), 120–133 (2008)CrossRefGoogle Scholar
  22. 22.
    Popovič, A., Coelho, P.S., Jaklič, J.: The impact of business intelligence system maturity on information quality. Inf. Res. 14(4) (2009). Paper 417Google Scholar
  23. 23.
    Tornatzky, L.G., Klein, K.J.: Innovation characteristics and innovation adoption-implementation: a meta-analysis of findings. IEEE Trans. Eng. Manag. 29(1), 13 (1982)Google Scholar
  24. 24.
    Gessner, G.H., Volonino, L.: Quick response improves returns on business intelligence investments. Inf. Syst. Manag. 22(3), 66–74 (2005)CrossRefGoogle Scholar
  25. 25.
    Zhu, K., et al.: Innovation diffusion in global contexts: determinants of post-adoption digital transformation of European companies. Eur. J. Inf. Syst. 15(6), 601–616 (2006)CrossRefGoogle Scholar
  26. 26.
    Cooper, R.B., Zmud, R.W.: Information technology implementation research: a technological diffusion approach. Manag. Sci. 36(2), 123–139 (1990)CrossRefGoogle Scholar
  27. 27.
    Lee, O.K., et al.: Knowledge management systems diffusion in chinese enterprises: a multistage approach using the technology-organization-environment framework. J. Glob. Inf. Manag. 17(1), 70–84 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kwon, T.H., Zmud, R.W.: Unifying the Fragmented Models of Information Systems Implementation, in Critical Issues in Information Systems Research, pp. 227–251. Wiley, Hoboken (1987)Google Scholar
  29. 29.
    Oliveira, T., Martins, M.F.: Understanding e-business adoption across industries in European countries. Ind. Manag. Data Syst. 110(9), 1337–1354 (2010)CrossRefGoogle Scholar
  30. 30.
    Iacovou, C.L., Benbasat, I., Dexter, A.S.: Electronic data interchange and small organizations: adoption and impact of technology. MIS Q. 19(4), 465–485 (1995)CrossRefGoogle Scholar
  31. 31.
    Zhu, K., Kraemer, K.L., Xu, S.: The process of innovation assimilation by firms in different countries: a technology diffusion perspective on e-business. Manag. Sci. 58(10), 1557–1576 (2006)CrossRefGoogle Scholar
  32. 32.
    Davenport, T.H., Mule, L.D., Lucker, J.: Know what your customers want before they do. Harv. Bus. Rev. 89(12), 84–92 (2011)Google Scholar
  33. 33.
    Massa, S., Testa, S.: Data warehouse-in-practice: exploring the function of expectations in organizational outcomes. Inf. Manag. 42(5), 709–718 (2005)CrossRefGoogle Scholar
  34. 34.
    Ramakrishnan, T., Jones, M.C., Sidorova, A.: Factors influencing business intelligence (BI) data collection strategies: an empirical investigation. Decis. Support Syst. 52(2), 486–496 (2012)CrossRefGoogle Scholar
  35. 35.
    Côrte-Real, N., Ruivo, P., Oliveira, T.: The diffusion stages of business intelligence & analytics (BI&A) a systematic mapping study. Procedia Technol. 16(Supplement C), 172–179 (2014)CrossRefGoogle Scholar
  36. 36.
    Bose, R.: Advanced analytics: opportunities and challenges. Ind. Manag. Data Syst. 109(2), 155–172 (2009)CrossRefGoogle Scholar
  37. 37.
    Abbasi, A., Sarker, S., Chiang, R.H.: J. Assoc. Inf. Syst. 17, 3 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Frederico Cruz-Jesus
    • 1
  • Tiago Oliveira
    • 1
  • Mijail Naranjo
    • 1
  1. 1.NOVA, Information Management School (NOVA IMS)LisbonPortugal

Personalised recommendations