Health Data Analytics: A Proposal to Measure Hospitals Information Systems Maturity

  • João Vidal Carvalho
  • Álvaro Rocha
  • José Vasconcelos
  • António Abreu
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 745)


In the last five decades, maturity models have been introduced as reference frameworks for Information System (IS) management in organizations within different industries. In the healthcare domain, maturity models have also been used to address a wide variety of challenges and the high demand for hospital IS (HIS) implementations. The increasing volume of data, is exceeded the ability of health organizations to process it for improving clinical and financial efficiencies and quality of care. It is believed that careful and attentive use of Data Analytics (DA) in healthcare can transform data into knowledge that can improve patient outcomes and operational efficiency. A maturity model in this conjuncture, is a way of identifying strengths and weaknesses of the HIS maturity and thus, find a way for improvement and evolution. This paper presents a proposal to measure Hospitals Information Systems maturity with regard to DA. The outcome of this paper is a maturity model, which includes six stages of HIS growth and maturity progression.


Data Analysis Analytics Maturity models Hospital Information Systems 


  1. 1.
    Roesems-Kerremans, G.: Big data in healthcare. J. Healthc. Commun. 1(4:33), 1–3 (2016)Google Scholar
  2. 2.
    Mathews, R.: Healthcare Analytics Maturity Model (2015). Accessed Jan 2016
  3. 3.
    Sanders, D., Burton, D.A., Protti, D.: The Healthcare Analytics Adoption Model: A Framework and Roadmap (white paper) (2013). Accessed Oct 2015
  4. 4.
    Paulk, M., et al.: Capability Maturity Model for Software Version 1.1. Software Engineering Institute, Carnegie Mellon University, CMU/SEI-93-TR-024 (1993)Google Scholar
  5. 5.
    Fraser, P., Moultrie, J., Gregory, M.: The use of maturity models/grids as a tool in assessing product development capability. In: Proceedings of the IEEE International Engineering Management Conference, Cambridge, UK, 18–20 August, pp. 244–249. IEEE Engineering Management Society, Piscataway (2002)Google Scholar
  6. 6.
    Nolan, R.: Managing de computer resource: a stage hypotesis. Commun. ACM 16(7), 399–405 (1973)CrossRefGoogle Scholar
  7. 7.
    Gibson, C., Nolan, R.: Managing the four stages of EDP growth. Harvard Bus. Rev. 52, 76–88 (1974)Google Scholar
  8. 8.
    Mettler, T.: A Design Science Research Perspective on Maturity Models in Information Systems. University of St. Gallen, St. Gallen (2009)Google Scholar
  9. 9.
    Rocha, Á.: Evolution of information systems and technologies maturity in healthcare. Int. J. Healthc. Inf. Syst. Inform. 6(2), 28–36 (2011)CrossRefGoogle Scholar
  10. 10.
    Becker, J., Knackstedt, R., Pöppelbuß, J.: Developing maturity models for IT management – a procedure model and its application. Bus. Inf. Syst. Eng. 1(3), 213–222 (2009)CrossRefGoogle Scholar
  11. 11.
    Mettler, T., Rohner, P.: Situational maturity models as instrumental artifacts for organizational design. In: DESRIST 2009, Malvern, PA, USA (2009)Google Scholar
  12. 12.
    Caralli, R., Knight, M.: Maturity Models 101: A Primer for Applying Maturity Models to Smart Grid Security, Resilience, and Interoperability. Software Engineering Institute, Carnegie Mellon University (2012)Google Scholar
  13. 13.
    van de Wetering, R., Batenburg, R., Lederman, R.: Evolutionistic or revolutionary paths? A PACS maturity model for strategic situational planning. Int. J. Comput. Assist. Radiol. Surg. 5(4), 401–409 (2010)CrossRefGoogle Scholar
  14. 14.
    van de Wetering, R., et al.: A situational alignment framework for PACS. J. Digit. Imaging 24(6), 979–992 (2011)CrossRefGoogle Scholar
  15. 15.
    Carvalho, J.V., Rocha, Á., Abreu, A.: Maturity models of healthcare information systems and technologies: a literature review. J. Med. Syst. 40(6), 1–10 (2016)CrossRefGoogle Scholar
  16. 16.
    ISO9241–11: ISO 9241-11: Guidance on Usability (1998). Accessed Oct 2015
  17. 17.
    HIMSS: The EMR Adoption Model. HIMSS Analytics: Innovative Research/Informed Decisions (2008)Google Scholar
  18. 18.
    Holland, M., Dunbrack, L., Piai, S.: Healthcare IT Maturity Model: Western European Hospitals - The Leading Countries. European IT Opportunity: Healthcare Healthcare Provider IT Strategies Health Industry Insights, an IDC Company (2008)Google Scholar
  19. 19.
    Sharma, B.: Electronic Healthcare Maturity Model (eHMM): A White Paper. Quintegra Solutions Limited (2008)Google Scholar
  20. 20.
    Priestman, W.: ICT Strategy 2007–2011 for The Royal Liverpool and Broadgreen University Hospitals NHS Trust. Trust Board Meeting 6th November 2007. Document Number: V1.4 (2007)Google Scholar
  21. 21.
    Pinto-Valverde, J.M., et al.: HDQM2: healthcare data quality maturity model. In: Transactions of the International Conference on Health Information Technology Advancement. Western Michigan University (2013)Google Scholar
  22. 22.
    Brooks, P., El-Gayar, O., Sarnikar, S.: Towards a business intelligence maturity model for healthcare. In: 46th Hawaii International Conference on System Sciences (HICSS). IEEE (2013)Google Scholar
  23. 23.
    Carvalho, J.V., Rocha, Á., Abreu, A.: HISMM - hospital information system maturity model: a synthesis. In: International Conference on Software Process Improvement, vol. 537, pp. 189–200 (2016)Google Scholar
  24. 24.
    Carvalho, J.V., et al.: A Maturity model for hospital information systems. J. Bus. Res. 1–12 (2017)Google Scholar
  25. 25.
    Hevner, A.R., et al.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)CrossRefGoogle Scholar
  26. 26.
    Mettler, T.: Thinking in terms of design decisions when developing maturity models. Int. J. Strateg. Decis. Sci. (IJSDS) 1(4), 76–87 (2010)CrossRefGoogle Scholar
  27. 27.
    March, S.T., Smith, G.F.: Design and natural science research on information technology. Decis. Support Syst. 15(4), 251–266 (1995)CrossRefGoogle Scholar
  28. 28.
    Carvalho, J.V., Rocha, Á., Abreu, A.: Maturity of hospital information systems: most important influencing factors. Health Inf. J. (2017).
  29. 29.
    King, J., Kraemer, K.: Evolution and organizational information systems: an assessment of Nolan’s stage model. Commun. ACM 27(5), 466–475 (1984)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • João Vidal Carvalho
    • 1
  • Álvaro Rocha
    • 2
  • José Vasconcelos
    • 3
  • António Abreu
    • 1
  1. 1.Politécnico do Porto, ISCAP, CEOS.PPMatosinhosPortugal
  2. 2.Departamento de Engenharia InformáticaUniversidade de CoimbraCoimbraPortugal
  3. 3.Universidade AtlânticaBarcarenaPortugal

Personalised recommendations