Satisfaction with e-participation: A Model from the Citizen’s Perspective, Expectations, and Affective Ties to the Place

  • Mijail Naranjo Zolotov
  • Tiago Oliveira
  • Frederico Cruz-Jesus
  • José Martins
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 745)

Abstract

The diffusion and adoption of e-participation contributes to better democracy and more participative societies. Nevertheless, despite the potential benefits of e-participation, the level of citizen satisfaction regarding the use of e-participation and its effects on the continued intention to use have not been widely assessed yet in the literature. This article proposes a conceptual model that integrates the DeLone & McLean success model, that assesses the citizen satisfaction regarding the perception of the e-participation system quality; the expectation-confirmation model for the continued intention to use, which evaluates satisfaction based on the confirmation of ex-post experience on e-participation use and the perceived usefulness; and the dimensions of sense of place, which play a moderator role between the citizen satisfaction and the e-participation use.

Keywords

e-participation Citizen satisfaction DeLone & McLean model Expectation-confirmation model Sense of place 

Notes

Acknowledgment

Mijail Naranjo Zolotov gratefully acknowledge the support of Geo-informatics: Enabling Open Cities (GEO-C), the project funded by the European Commission within the Marie Skłodowska-Curie Actions, International Training Networks (ITN), and European Joint Doctorates (EJD). Grant Agreement number 642332 - GEO-C - H2020-MSCA-ITN-2014.

References

  1. 1.
    United Nations: E-government survey 2014 E-government for the future we want. New York, USA (2014)Google Scholar
  2. 2.
    Royo, S., Yetano, A.: “Crowdsourcing” as a tool for e-participation: two experiences regarding CO2 emissions at municipal level. Electron. Commer. Res. 15, 323–348 (2015).  https://doi.org/10.1007/s10660-015-9183-6CrossRefGoogle Scholar
  3. 3.
    Vragov, R., Kumar, N.: The impact of information and communication technologies on the costs of democracy. Electron. Commer. Res. Appl. 12, 440–448 (2013).  https://doi.org/10.1016/j.elerap.2013.06.003CrossRefGoogle Scholar
  4. 4.
    Bélanger, F., Carter, L.: Trust and risk in e-government adoption. J. Strateg. Inf. Syst. 17, 165–176 (2008).  https://doi.org/10.1016/j.jsis.2007.12.002CrossRefGoogle Scholar
  5. 5.
    United Nations: E-Government Survey 2012 E-government for the People (2012)Google Scholar
  6. 6.
    Foresee: Foresee e-government satisfaction index Q1 2016 (2016)Google Scholar
  7. 7.
    Kipenis, L., Askounis, D.: Assessing e-participation via user’s satisfaction measurement: the case of OurSpace platform. Ann. Oper. Res. 247, 599–615 (2016).  https://doi.org/10.1007/s10479-015-1911-8CrossRefMATHGoogle Scholar
  8. 8.
    Naranjo Zolotov, M., Oliveira, T., Casteleyn, S.: E-participation adoption models research in the last 17 years: a weight and meta-analytical review. Comput. Hum. Behav. 81, 350–365 (2018).  https://doi.org/10.1016/j.chb.2017.12.031CrossRefGoogle Scholar
  9. 9.
    DeLone, W.H., McLean, E.R.: The DeLone and McLean model of information system success: a ten-year update. J. Manage. Inf. Syst. 19, 9–30 (2003).  https://doi.org/10.1073/pnas.0914199107CrossRefGoogle Scholar
  10. 10.
    Bhattacherjee, A.: Understanding information systems continuance: an expectation-confirmation model. MIS Q. 25, 351–370 (2001).  https://doi.org/10.2307/3250921CrossRefGoogle Scholar
  11. 11.
    Van Ryzin, G.G.: Pieces of a puzzle: linking government performance, citizen satisfaction, and trust. Public Perform. Manage. Rev. 30, 521–535 (2007).  https://doi.org/10.2753/PMR1530-9576300403CrossRefGoogle Scholar
  12. 12.
    Van Ryzin, G.G.: Testing the expectancy disconfirmation model of citizen satisfaction with local government. J. Public Adm. Res. Theory 16, 599–611 (2005).  https://doi.org/10.1093/jopart/mui058CrossRefGoogle Scholar
  13. 13.
    Venkatesh, V., Thong, J.Y.L., Chan, F.K.Y., Hu, P.J.H.: Managing citizens’ uncertainty in e-government services: the mediating and moderating roles of transparency and trust. Inf. Syst. Res. 27, 87–111 (2016).  https://doi.org/10.1287/isre.2015.0612CrossRefGoogle Scholar
  14. 14.
    Al Hujran, O., Aloudat, A., Altarawneh, I.: Factors influencing citizen adoption of e-government in developing countries. Int. J. Technol. Hum. Interact. 9, 1–19 (2013).  https://doi.org/10.4018/jthi.2013040101CrossRefGoogle Scholar
  15. 15.
    Chan, F.K.Y., Thong, J.Y.L., Venkatesh, V., et al.: Modeling citizen satisfaction with mandatory adoption of an e-government technology. J.Assoc. Inf. Syst. 11, 519–549 (2010)Google Scholar
  16. 16.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 27, 425–478 (2003).  https://doi.org/10.2307/30036540CrossRefGoogle Scholar
  17. 17.
    Medaglia, R.: eParticipation research: moving characterization forward (2006–2011). Gov. Inf. Q. 29, 346–360 (2012).  https://doi.org/10.1016/j.giq.2012.02.010CrossRefGoogle Scholar
  18. 18.
    Tam, C., Oliveira, T.: Understanding mobile banking individual performance the DeLone & McLean model and the moderating effects of individual culture. Internet Res. 27, 538–562 (2017).  https://doi.org/10.1108/IntR-05-2016-0117CrossRefGoogle Scholar
  19. 19.
    Akter, S., D’Ambra, J., Ray, P.: Service quality of mHealth platforms: development and validation of a hierarchical model using PLS. Electron. Mark. 20, 209–227 (2010).  https://doi.org/10.1007/s12525-010-0043-xCrossRefGoogle Scholar
  20. 20.
    Susanto, A., Chang, Y., Ha, Y.: Determinants of continuance intention to use the smartphone banking services. Ind. Manage. Data Syst. 116, 508–525 (2016).  https://doi.org/10.1108/IMDS-05-2015-0195CrossRefGoogle Scholar
  21. 21.
    Oghuma, A.P., Libaque-Saenz, C.F., Wong, S.F., Chang, Y.: An expectation-confirmation model of continuance intention to use mobile instant messaging. Telemat Inform. 33, 34–47 (2016).  https://doi.org/10.1016/j.tele.2015.05.006CrossRefGoogle Scholar
  22. 22.
    Ahn, M.J., Bretschneider, S.: Politics of e-government: E-government and the political control of bureaucracy. Public Adm. Rev. 71, 414–424 (2011).  https://doi.org/10.1111/j.1540-6210.2011.02225.xCrossRefGoogle Scholar
  23. 23.
    Christensen, T., Lægreid, P.: Trust in government: the relative importance of service satisfaction, political factors, and demography. Public Perform. Manage. Rev. 28, 487–511 (2005).  https://doi.org/10.1080/15309576.2005.11051848CrossRefGoogle Scholar
  24. 24.
    Welch, E.W.: Linking citizen satisfaction with e-government and trust in government. J. Public Adm. Res. Theory 15, 371–391 (2004).  https://doi.org/10.1093/jopart/mui021CrossRefGoogle Scholar
  25. 25.
    Ma, L., Zheng, Y.: National e-government performance and citizen satisfaction: a multilevel analysis across European countries. Int. Rev. Adm. Sci. 1–21 (2017).  https://doi.org/10.1177/0020852317703691
  26. 26.
    Van Ryzin, G.G.: An experimental test of the expectancy-disconfirmation theory of citizen satisfaction. J. Policy. Anal. Manage. 32, 597–614 (2013).  https://doi.org/10.1002/pam.21702CrossRefGoogle Scholar
  27. 27.
    Jorgensen, B.S., Stedman, R.C.: Sense of place as an attitude: lakeshore owners attitudes toward their properties. J. Environ. Psychol. 21, 233–248 (2001).  https://doi.org/10.1006/jevp.2001.0226CrossRefGoogle Scholar
  28. 28.
    Teo, T.S.H., Srivastava, S.C., Jiang, L.: Trust and electronic government success: an empirical study. J. Manage. Inf. Syst. 25, 99–132 (2009).  https://doi.org/10.2753/MIS0742-1222250303CrossRefGoogle Scholar
  29. 29.
    Allegretti, G., Antunes, S.: The Lisbon Participatory Budget: results and perspectives on an experience in slow but continuous transformation. F. Actions Sci. Reports. 11, 0–10 (2014)Google Scholar
  30. 30.
    Wang, Y., Liao, Y.: Assessing eGovernment systems success: a validation of the DeLone and McLean model of information systems success. Gov. Inf. Q. 25, 717–733 (2008).  https://doi.org/10.1016/j.giq.2007.06.002CrossRefGoogle Scholar
  31. 31.
    Hong, S., Thong, J.Y.L., Tam, K.Y.: Understanding continued information technology usage behavior: a comparison of three models in the context of mobile internet. Decis. Support Syst. 42, 1819–1834 (2006).  https://doi.org/10.1016/j.dss.2006.03.009CrossRefGoogle Scholar
  32. 32.
    Bhattacherjee, A., Premkumar, G.: Understanding changes in belief and attitude toward information technology usage: a theoretical model and longitudinal test. MIS Q. 28, 229–254 (2004)CrossRefGoogle Scholar
  33. 33.
    Hoehle, H., Venkatesh, V.: Mobile application usability: conceptualization and instrument development. MIS Q. 39, 435–472 (2015)CrossRefGoogle Scholar
  34. 34.
    Liao, C., Palvia, P., Chen, J.L.: Information technology adoption behavior life cycle: toward a Technology Continuance Theory (TCT). Int. J. Inf. Manage. 29, 309–320 (2009).  https://doi.org/10.1016/j.ijinfomgt.2009.03.004CrossRefGoogle Scholar
  35. 35.
    Acedo, A., Painho, M., Casteleyn, S.: Place and city: operationalizing sense of place and social capital in the urban context. Trans. GIS 21, 503–520 (2017).  https://doi.org/10.1111/tgis.12282CrossRefGoogle Scholar
  36. 36.
    Jorgensen, B.S., Stedman, R.C.: A comparative analysis of predictors of sense of place dimensions: attachment to, dependence on, and identification with lakeshore properties. J. Environ. Manage. 79, 316–327 (2006).  https://doi.org/10.1016/j.jenvman.2005.08.003CrossRefGoogle Scholar
  37. 37.
    Lewicka, M.: Place attachment: how far have we come in the last 40 years? J. Environ. Psychol. 31, 207–230 (2011).  https://doi.org/10.1016/j.jenvp.2010.10.001MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lewicka, M.: Ways to make people active: the role of place attachment, cultural capital, and neighborhood ties. J. Environ. Psychol. 25, 381–395 (2005).  https://doi.org/10.1016/j.jenvp.2005.10.004CrossRefGoogle Scholar
  39. 39.
    Stedman, R.C.: Toward a social psychology of place: predicting behavior from place-based cognitions, attitude, and identity. Environ. Behav. 34, 561–581 (2002).  https://doi.org/10.1177/0013916502034005001CrossRefGoogle Scholar
  40. 40.
    Cuba, L., Hummon, D.M.: A place to call home: identification with dwelling, community and region. Sociol. Q. 34, 111–131 (1993).  https://doi.org/10.1111/j.1533-8525.1993.tb00133.xCrossRefGoogle Scholar
  41. 41.
    Petrovsky, N., Mok, J.Y., León-Cázares, F.: Citizen expectations and satisfaction in a young democracy: a test of the expectancy-disconfirmation model. Public Adm. Rev. 77, 395–407 (2017).  https://doi.org/10.1111/puar.12623CrossRefGoogle Scholar
  42. 42.
    Hair, J., Hult, T., Ringle, C., Sarstedt, M.: A primer on partial least squares structural equation modeling (PLS-SEM), 1st edn. SAGE Publications, Thousand Oaks (2014)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mijail Naranjo Zolotov
    • 1
  • Tiago Oliveira
    • 1
  • Frederico Cruz-Jesus
    • 1
  • José Martins
    • 2
  1. 1.NOVA, Information Management School (NOVA IMS)LisbonPortugal
  2. 2.INESC TEC and University of Trás-os-Montes e Alto DouroVila RealPortugal

Personalised recommendations