Generating Nonuniform Random Numbers

  • Ronald T. Kneusel


In this chapter we look at how to transform uniform random numbers into samples from other distributions. We only consider standard or commonly found distributions and develop a cookbook of transformations. We give code for the transformations and investigate the effects of different uniform generators on the output.


  1. 1.
    Box, George EP, and Mervin E. Muller. “A note on the generation of random normal deviates” The annals of mathematical statistics 29.2 (1958): 610–611.CrossRefzbMATHGoogle Scholar
  2. 2.
    Marsaglia, George, and Thomas A. Bray. “A convenient method for generating normal variables.” Siam Review 6.3 (1964): 260–264.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Devroye, Luc. Non-Uniform Random Variate Generation (1986): 524ff.Google Scholar
  4. 4.
    Marsaglia, George, and Wai Wan Tsang. “A simple method for generating gamma variables.” ACM Transactions on Mathematical Software (TOMS) 26.3 (2000): 363–372.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ahrens, Joachim H., and Ulrich Dieter. “Computer methods for sampling from gamma, beta, poisson and binomial distributions.” Computing 12, no. 3 (1974): 223–246.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ahrens, Joachim H., and Ulrich Dieter. “Generating gamma variates by a modified rejection technique.” Communications of the ACM 25, no. 1 (1982): 47–54.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Marsaglia, George. “The squeeze method for generating gamma variates.” Computers and Mathematics with Applications 3, no. 4 (1977): 321–325.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kneusel, Ronald T. and Mozer, Michael C. “Improving Human-Machine Cooperative Visual Search With Soft Highlighting.” ACM Trans. Appl. Percept., 15 (2017): 3:1–3:21.Google Scholar
  9. 9.
    Bevington, Philip T. “Data reduction and error analysis for the physical sciences.” (1969).Google Scholar
  10. 10.
    Knuth, D.E.. Seminumerical Algorithms. The Art of Computer Programming (2nd ed.), Vol. 2, Addison-Wesley, Reading, MA (1981).Google Scholar
  11. 11.
    Kemp, C. D., and Adrienne W. Kemp. “Poisson random variate generation.” Applied Statistics (1991): 143–158.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ronald T. Kneusel
    • 1
  1. 1.ThorntonUSA

Personalised recommendations