Generating Uniform Random Numbers

  • Ronald T. Kneusel
Chapter

Abstract

Integers uniformly distributed over some interval are at the heart of pseudorandom number generators. This chapter examines techniques for generating pseudorandom integers: some historical, some useful for noncritical tasks such as games, and others which are workhorses and should be thought of as go-to methods. We will also take a look at how combining generators can increase their periods. We end the chapter with a brief look at quasirandom generators.

References

  1. 1.
    Lehmer, D. H. “Proceedings of the Second Symposium on Large-Scale Digital Computing Machinery.” (1951).Google Scholar
  2. 2.
    Hull, Thomas E., and Alan R. Dobell. “Random number generators.” SIAM review 4.3 (1962): 230–254.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Knuth, Donald Ervin. The art of computer programming: sorting and searching. Vol. 3. Pearson Education, 1998.Google Scholar
  4. 4.
    Marsaglia, George. “Random numbers fall mainly in the planes.” Proceedings of the National Academy of Sciences 61.1 (1968): 25–28.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Park, Stephen K., and Keith W. Miller. “Random number generators: good ones are hard to find.” Communications of the ACM 31.10 (1988): 1192–1201.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Marsaglia, George; Sullivan, Stephen. “Technical correspondence”. Communications of the ACM. 36 (7) (1993): 105–110.CrossRefGoogle Scholar
  7. 7.
    Schrage, Linus. “A more portable Fortran random number generator.” ACM Transactions on Mathematical Software (TOMS) 5.2 (1979): 132–138.CrossRefMATHGoogle Scholar
  8. 8.
    Shannon, Claude E. “Programming a computer for playing chess.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41.314 (1950): 256–275.Google Scholar
  9. 9.
  10. 10.
    Matsumoto, Makoto, and Takuji Nishimura. “Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator.” ACM Transactions on Modeling and Computer Simulation (TOMACS) 8.1 (1998): 3–30.CrossRefMATHGoogle Scholar
  11. 11.
    Saito, Mutsuo, and Makoto Matsumoto. “Simd-oriented fast mersenne twister: a 128-bit pseudorandom number generator.” Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg, 2008. 607–622.Google Scholar
  12. 12.
    Marsaglia, George. “Xorshift rngs.” Journal of Statistical Software 8.14 (2003): 1–6.CrossRefGoogle Scholar
  13. 13.
    http://xoroshiro.di.unimi.it/ (accessed 20-Aug-2017).
  14. 14.
    Vigna, Sebastiano. “An experimental exploration of Marsaglia’s xorshift generators, scrambled.” ACM Transactions on Mathematical Software (TOMS) 42.4 (2016): 30.Google Scholar
  15. 15.
    Kneusel, Ronald T. Numbers and Computers, 2nd Ed. Springer International Publishing, 2017.Google Scholar
  16. 16.
    Marsaglia, George (2003) “Random Number Generators,” Journal of Modern Applied Statistical Methods: Vol. 2 : Iss. 1, Article 2.Google Scholar
  17. 17.
  18. 18.
    Salmon, John K., Mark A. Moraes, Ron O. Dror, and David E. Shaw. “Parallel random numbers: as easy as 1, 2, 3.” In High Performance Computing, Networking, Storage and Analysis (SC), 2011 International Conference for, pp. 1–12. IEEE, 2011.Google Scholar
  19. 19.
    L’ecuyer, Pierre. “Efficient and portable combined random number generators.” Communications of the ACM 31.6 (1988): 742–751.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Marsaglia, George (2011) “RNGs with periods exceeding 10(̂40million).” Online posting 16-Jan-2011, sci.crypt.Google Scholar
  21. 21.
    Rose, Gregory G. “KISS: A bit too simple.” Cryptography and Communications (2011): 1–15.Google Scholar
  22. 22.
    Halton, John H. “On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals.” Numerische Mathematik 2.1 (1960): 84–90.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Sobol, I.M. (1967), “Distribution of points in a cube and approximate evaluation of integrals”. U.S.S.R Comput. Maths. Math. Phys. 7: 86–112.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ronald T. Kneusel
    • 1
  1. 1.ThorntonUSA

Personalised recommendations