Skip to main content

Abstract

Antimicrobial peptides (AMPs) are small proteins synthesized predominantly by leukocytes. Although discovered about a century ago, interest in AMPs has only recently burgeoned, largely fueled by the need for alternative therapeutics against drug-resistant infections. AMPs are widely distributed; they are found intracellularly, in body fluids and at mucosal surfaces. Although their primary physiological function is considered protection against infections, it is increasingly evident that the role of AMPs may also extend to wound healing and immunomodulation. Several studies have associated dysregulation of AMPs with predisposition to infectious diseases and immune disorders, although causality remains to be established. Naturally occurring and synthetic AMPs have been developed for treatment of infections. However, as with antibiotics, pathogens acquire resistance to AMPs, which have posed an obstacle to their clinical development. The current review provides a brief overview of this complex and evolving field.

This work was supported by grants from the National Institutes of Health/National Institutes of Allergy and Infectious Diseases, AI111728, AI118161, AI119327, and AI114790.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44(D1):D1087–93.

    Article  PubMed  CAS  Google Scholar 

  2. Zimmer J, Hobkirk J, Mohamed F, Browning M, Stover CM. On the functional overlap between complement and antimicrobial peptides. Front Immunol. 2015;5

    Google Scholar 

  3. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.

    Article  PubMed  CAS  Google Scholar 

  4. Park Y, Hahm KS. Antimicrobial peptides (AMPs): peptide structure and mode of action. J Biochem Mol Biol. 2005;38(5):507–16.

    PubMed  CAS  Google Scholar 

  5. Tennessen JA. Molecular evolution of animal antimicrobial peptides: widespread moderate positive selection. J Evol Biol. 2005;18(6):1387–94.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang LJ, Gallo RL. Antimicrobial peptides. Curr Biol. 2016;26(1):R14–9.

    Article  PubMed  CAS  Google Scholar 

  7. Hollox EJ, Armour JA, Barber JC. Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet. 2003;73(3):591–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Coda AB, et al. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel. J Am Acad Dermatol. 2013;69(4):570–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Senyurek I, Klein G, Kalbacher H, Deeg M, Schittek B. Peptides derived from the human laminin alpha 4 and alpha 5 chains exhibit antimicrobial activity. Peptides. 2010;31(8):1468–72.

    Article  PubMed  CAS  Google Scholar 

  10. Mansour SC, Pena OM, Hancock REW. Host defense peptides: front-line immunomodulators. Trends Immunol. 2014;35(9):443–50.

    Article  PubMed  CAS  Google Scholar 

  11. Steinstraesser L, Kraneburg U, Jacobsen F, Al-Benna S. Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology. 2011;216(3):322–33.

    Article  PubMed  CAS  Google Scholar 

  12. Meisch JP, et al. Human beta-defensin 3 peptide is increased and redistributed in Crohn’s ileitis. Inflamm Bowel Dis. 2013;19(5):942–53.

    Article  PubMed  Google Scholar 

  13. Lande R, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–9.

    Article  PubMed  CAS  Google Scholar 

  14. Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol. 2002;169(7):3883–91.

    Article  PubMed  CAS  Google Scholar 

  15. Rosenfeld Y, Papo N, Shai Y. Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action. J Biol Chem. 2006;281(3):1636–43.

    Article  PubMed  CAS  Google Scholar 

  16. Yamasaki K, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13(8):975–80.

    Article  PubMed  CAS  Google Scholar 

  17. Courth LF, et al. Crohn's disease-derived monocytes fail to induce Paneth cell defensins. Proc Natl Acad Sci U S A. 2015;112(45):14000–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang G. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol Biol. 2015;1268:43–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. 2004;75(1):39–48.

    Article  PubMed  CAS  Google Scholar 

  20. Bulet P, Stocklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev. 2004;198:169–84.

    Article  PubMed  CAS  Google Scholar 

  21. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238–50.

    Article  PubMed  CAS  Google Scholar 

  22. Ahmad A, et al. Identification and design of antimicrobial peptides for therapeutic applications. Curr Protein Pept Sci. 2012;13(3):211–23.

    Article  PubMed  CAS  Google Scholar 

  23. White SH, Wimley WC, Selsted ME. Structure, function, and membrane integration of defensins. Curr Opin Struct Biol. 1995;5(4):521–7.

    Article  PubMed  CAS  Google Scholar 

  24. Lehrer RI, Cole AM, Selsted ME. θ-Defensins: cyclic peptides with endless potential. J Biol Chem. 2012;287(32):27014–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yount NY, Yeaman MR. Immunocontinuum: perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Pept Lett. 2005;12(1):49–67.

    Article  PubMed  CAS  Google Scholar 

  26. Shah P, Hsiao FS, Ho YH, Chen CS. The proteome targets of intracellular targeting antimicrobial peptides. Proteomics. 2015.

    Google Scholar 

  27. Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29(9):464–72.

    Article  PubMed  CAS  Google Scholar 

  28. Cho J, et al. The novel biological action of antimicrobial peptides via apoptosis induction. J Microbiol Biotechnol. 2012;22(11):1457–66.

    Article  PubMed  CAS  Google Scholar 

  29. Burian M, Schittek B. The secrets of dermcidin action. Int J Med Microbiol. 2015;305(2):283–6.

    Article  PubMed  CAS  Google Scholar 

  30. Sass V, et al. Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun. 2010;78(6):2793–800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. de Leeuw E, et al. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett. 2010;584(8):1543–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Spencer JD, et al. Ribonuclease 7, an antimicrobial peptide upregulated during infection, contributes to microbial defense of the human urinary tract. Kidney Int. 2013;83(4):615–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lin YM, et al. Outer membrane protein I of Pseudomonas aeruginosa is a target of cationic antimicrobial peptide/protein. J Biol Chem. 2010;285(12):8985–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kim HS, et al. Endotoxin-neutralizing antimicrobial proteins of the human placenta. J Immunol. 2002;168(5):2356–64.

    Article  PubMed  CAS  Google Scholar 

  35. Hazrati E, et al. Human α- and β-Defensins block multiple steps in herpes simplex virus infection. J Immunol. 2006;177(12):8658–66.

    Article  PubMed  CAS  Google Scholar 

  36. Helmerhorst EJ, et al. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem. 1999;274(11):7286–91.

    Article  PubMed  CAS  Google Scholar 

  37. Luque-Ortega JR, van’t Hof W, Veerman EC, Saugar JM, Rivas L. Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. FASEB J. 2008;22(6):1817–28.

    Article  PubMed  CAS  Google Scholar 

  38. Mochon AB, Liu H. The antimicrobial peptide histatin-5 causes a spatially restricted disruption on the Candida albicans surface, allowing rapid entry of the peptide into the cytoplasm. PLoS Pathog. 2008;4(10):e1000190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Barker HC, Kinsella N, Jaspe A, Friedrich T, O’Connor CD. Formate protects stationary-phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide. Mol Microbiol. 2000;35(6):1518–29.

    Article  PubMed  CAS  Google Scholar 

  40. Backo M, Gaenger E, Burkart A, Chai YL, Bayer AS. Treatment of experimental staphylococcal endocarditis due to a strain with reduced susceptibility in vitro to vancomycin: efficacy of ampicillin-sulbactam. Antimicrob Agents Chemother. 1999;43(10):2565–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Territo MC, Ganz T, Selsted ME, Lehrer R. Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest. 1989;84(6):2017–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30(3):131–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. De Y, et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000;192(7):1069–74.

    Article  Google Scholar 

  44. Befus AD, et al. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol. 1999;163(2):947–53.

    PubMed  CAS  Google Scholar 

  45. Yang D, Biragyn A, Kwak LW, Oppenheim JJ. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 2002;23(6):291–6.

    Article  PubMed  CAS  Google Scholar 

  46. Funderburg N, et al. Human -defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci U S A. 2007;104(47):18631–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Niyonsaba F, Ushio H, Nagaoka I, Okumura K, Ogawa H. The human beta-defensins (-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes. J Immunol. 2005;175(3):1776–84.

    Article  PubMed  CAS  Google Scholar 

  48. Prohaszka Z, et al. Defensins purified from human granulocytes bind C1q and activate the classical complement pathway like the transmembrane glycoprotein gp41 of HIV-1. Mol Immunol. 1997;34(11):809–16.

    Article  PubMed  CAS  Google Scholar 

  49. Groeneveld TW, et al. Human neutrophil peptide-1 inhibits both the classical and the lectin pathway of complement activation. Mol Immunol. 2007;44(14):3608–14.

    Article  PubMed  CAS  Google Scholar 

  50. Nizet V. Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol. 2006;8:11–26.

    PubMed  CAS  Google Scholar 

  51. Gruenheid S, Le Moual H. Resistance to antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Lett. 2012;330(2):81–9.

    Article  PubMed  CAS  Google Scholar 

  52. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27–55.

    Article  PubMed  CAS  Google Scholar 

  53. Jin T, et al. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol. 2004;172(2):1169–76.

    Article  PubMed  CAS  Google Scholar 

  54. Frick IM, Akesson P, Rasmussen M, Schmidtchen A, Bjorck L. SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem. 2003;278(19):16561–6.

    Article  PubMed  CAS  Google Scholar 

  55. Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Rev. 1996;60(4):575–608.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Xu Z, O’Rourke BA, Skurray RA, Brown MH. Role of transmembrane segment 10 in efflux mediated by the staphylococcal multidrug transport protein QacA. J Biol Chem. 2006;281(2):792–9.

    Article  PubMed  CAS  Google Scholar 

  57. Guilhelmelli F, et al. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013;4:353.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bengoechea JA, Skurnik M. Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Mol Microbiol. 2000;37(1):67–80.

    Article  PubMed  CAS  Google Scholar 

  59. Padilla E, et al. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother. 2010;54(1):177–83.

    Article  PubMed  CAS  Google Scholar 

  60. Nikaido H, Hall JA. Overview of bacterial ABC transporters. Methods Enzymol. 1998;292:3–20.

    Article  PubMed  CAS  Google Scholar 

  61. Eswarappa SM, Panguluri KK, Hensel M, Chakravortty D. The yejABEF operon of Salmonella confers resistance to antimicrobial peptides and contributes to its virulence. Microbiology. 2008;154(Pt 2):666–78.

    Article  PubMed  CAS  Google Scholar 

  62. Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol. 2002;46(1):157–68.

    Article  PubMed  CAS  Google Scholar 

  63. Kooi C, Sokol PA. Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides. Microbiology. 2009;155(Pt 9):2818–25.

    Article  PubMed  CAS  Google Scholar 

  64. Sieprawska-Lupa M, et al. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother. 2004;48(12):4673–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Maisetta G, Brancatisano FL, Esin S, Campa M, Batoni G. Gingipains produced by Porphyromonas gingivalis ATCC49417 degrade human-beta-defensin 3 and affect peptide’s antibacterial activity in vitro. Peptides. 2011;32(5):1073–7.

    Article  PubMed  CAS  Google Scholar 

  66. Thomassin JL, Brannon JR, Gibbs BF, Gruenheid S, Le Moual H. OmpT outer membrane proteases of enterohemorrhagic and enteropathogenic Escherichia coli contribute differently to the degradation of human LL-37. Infect Immun. 2012;80(2):483–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Grodberg J, Dunn JJ. Comparison of Escherichia coli K-12 outer membrane protease OmpT and Salmonella typhimurium E protein. J Bacteriol. 1989;171(5):2903–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Guina T, Yi EC, Wang H, Hackett M, Miller SI. A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol. 2000;182(14):4077–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Dinulos JG, Mentele L, Fredericks LP, Dale BA, Darmstadt GL. Keratinocyte expression of human beta defensin 2 following bacterial infection: role in cutaneous host defense. Clin Diagn Lab Immunol. 2003;10(1):161–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Islam D, et al. Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med. 2001;7(2):180–5.

    Article  PubMed  CAS  Google Scholar 

  71. Chakraborty K, et al. Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol. 2008;10(12):2520–37.

    Article  PubMed  CAS  Google Scholar 

  72. Bergman P, et al. Neisseria gonorrhoeae downregulates expression of the human antimicrobial peptide LL-37. Cell Microbiol. 2005;7(7):1009–17.

    Article  PubMed  CAS  Google Scholar 

  73. Taggart CC, et al. Inactivation of human beta-defensins 2 and 3 by elastolytic cathepsins. J Immunol. 2003;171(2):931–7.

    Article  PubMed  CAS  Google Scholar 

  74. West AH, Stock AM. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci. 2001;26(6):369–76.

    Article  PubMed  CAS  Google Scholar 

  75. Beier D, Gross R. Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol. 2006;9(2):143–52.

    Article  PubMed  CAS  Google Scholar 

  76. Guo L, et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell. 1998;95(2):189–98.

    Article  PubMed  CAS  Google Scholar 

  77. Ernst RK, Guina T, Miller SI. Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect. 2001;3(14–15):1327–34.

    Article  PubMed  CAS  Google Scholar 

  78. Moskowitz SM, Ernst RK, Miller SI. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol. 2004;186(2):575–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Fernandez L, et al. The two-component system CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS. Antimicrob Agents Chemother. 2012;56(12):6212–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Domingues MM, Castanho MA, Santos NC. rBPI(21) promotes lipopolysaccharide aggregation and exerts its antimicrobial effects by (hemi)fusion of PG-containing membranes. PLoS One. 2009;4(12):e8385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Domingues MM, Lopes SC, Santos NC, Quintas A, Castanho MA. Fold-unfold transitions in the selectivity and mechanism of action of the N-terminal fragment of the bactericidal/permeability-increasing protein (rBPI(21)). Biophys J. 2009;96(3):987–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Levin M, et al. Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. rBPI21 Meningococcal Sepsis Study Group. Lancet. 2000;356(9234):961–7.

    Article  PubMed  CAS  Google Scholar 

  83. Mackin WM. Neuprex XOMA Corp. IDrugs. 1998;1(6):715–23.

    PubMed  CAS  Google Scholar 

  84. Gottler LM, Ramamoorthy A. Structure, membrane orientation, mechanism, and function of pexiganan – a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta. 2009;1788(8):1680–6.

    Article  PubMed  CAS  Google Scholar 

  85. Bolintineanu DS, Vivcharuk V, Kaznessis YN. Multiscale models of the antimicrobial peptide protegrin-1 on Gram-negative bacteria membranes. Int J Mol Sci. 2012;13(9):11000–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Jerse AE, et al. Multiple gonococcal opacity proteins are expressed during experimental urethral infection in the male. J Exp Med. 1994;179(3):911–20.

    Article  PubMed  CAS  Google Scholar 

  87. Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ. Antimicrobial peptides for therapeutic applications: a review. Molecules. 2012;17(10):12276–86.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Nibbering PH, et al. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect Immun. 2001;69(3):1469–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Lupetti A, et al. Human lactoferrin-derived peptide’s antifungal activities against disseminated Candida albicans infection. J Infect Dis. 2007;196(9):1416–24.

    Article  PubMed  CAS  Google Scholar 

  90. van der Does AM, et al. The human lactoferrin-derived peptide hLF1-11 primes monocytes for an enhanced TLR-mediated immune response. Biometals. 2010;23(3):493–505.

    Article  PubMed  CAS  Google Scholar 

  91. van der Does AM, et al. Antimicrobial peptide hLF1-11 directs granulocyte-macrophage colony-stimulating factor-driven monocyte differentiation toward macrophages with enhanced recognition and clearance of pathogens. Antimicrob Agents Chemother. 2010;54(2):811–6.

    Article  PubMed  CAS  Google Scholar 

  92. Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551–7.

    Article  PubMed  CAS  Google Scholar 

  93. Fjell CD, Hiss JA, Hancock RE, Schneider G. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. 2012;11(1):37–51.

    Article  CAS  Google Scholar 

  94. Mendez-Samperio P. Peptidomimetics as a new generation of antimicrobial agents: current progress. Infect Drug Resist. 2014;7:229–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Aoki W, Kuroda K, Ueda M. Next generation of antimicrobial peptides as molecular targeted medicines. J Biosci Bioeng. 2012;114(4):365–70.

    Article  PubMed  CAS  Google Scholar 

  96. Mojsoska B, Jenssen H. Peptides and Peptidomimetics for antimicrobial drug design. Pharmaceuticals (Basel). 2015;8(3):366–415.

    Article  CAS  Google Scholar 

  97. Rieg S, et al. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol. 2005;174(12):8003–10.

    Article  PubMed  CAS  Google Scholar 

  98. Ong PY, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–60.

    Article  PubMed  CAS  Google Scholar 

  99. Rivas-Santiago B, Serrano CJ, Enciso-Moreno JA. Susceptibility to infectious diseases based on antimicrobial peptide production. Infect Immun. 2009;77(11):4690–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Fellermann K, et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet. 2006;79(3):439–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Jurevic RJ, Bai M, Chadwick RB, White TC, Dale BA. Single-nucleotide polymorphisms (SNPs) in human beta-defensin 1: high-throughput SNP assays and association with Candida carriage in type I diabetics and nondiabetic controls. J Clin Microbiol. 2003;41(1):90–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Segat L, et al. DEFB-1 genetic polymorphism screening in HIV-1 positive pregnant women and their children. J Matern Fetal Neonatal Med. 2006;19(1):13–6.

    Article  PubMed  CAS  Google Scholar 

  103. Milanese M, et al. DEFB1 gene polymorphisms and increased risk of HIV-1 infection in Brazilian children. AIDS. 2006;20(12):1673–5.

    Article  PubMed  CAS  Google Scholar 

  104. Pütsep K, Carlsson G, Boman HG, Andersson M. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet. 2002;360(9340):1144–9.

    Article  PubMed  Google Scholar 

  105. Limoli DH, et al. Cationic antimicrobial peptides promote microbial mutagenesis and pathoadaptation in chronic infections. PLoS Pathog. 2014;10(4):e1004083.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ganz T, Metcalf JA, Gallin JI, Boxer LA, Lehrer RI. Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and “specific” granule deficiency. J Clin Invest. 1988;82(2):552–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Kelly P, et al. Reduced gene expression of intestinal alpha-defensins predicts diarrhea in a cohort of African adults. J Infect Dis. 2006;193(10):1464–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Ram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborti, S., Ram, S. (2018). Antimicrobial Peptides. In: Segal, B. (eds) Management of Infections in the Immunocompromised Host. Springer, Cham. https://doi.org/10.1007/978-3-319-77674-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77674-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77672-9

  • Online ISBN: 978-3-319-77674-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics