Skip to main content

Smooth expanding maps: The spectrum of the transfer operator

  • Chapter
  • First Online:
Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps

Abstract

This chapter presents a variant of Ruelle’s bound on the essential spectral radius of transfer operators associated with differentiable expanding dynamics and weights, replacing the Hölder spaces by Sobolev spaces. The chapter ends with the Gouëzel-Keller-Liverani perturbation theory, which will also be applicable in the hyperbolic setting of Part II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We shall not discuss the analytic case, referring instead to [137], [73, 150, 151], [74, 1], and [160, 161].

  2. 2.

    Existence of a maximal eigenvalue can also be obtained from Theorems 3.3 or 3.5 and Corollary 3.8, as explained in Lemma 6.1 in the hyperbolic case.

  3. 3.

    See Collet–Isola [52] for an earlier result in the symbolic setting for \(0< t<1\).

  4. 4.

    See [52, 107] for eigenvalues of modulus \(\le\ell^{-r}\), in slightly different settings.

  5. 5.

    Section 7.1.1 of the present book contains the analogous theory for the peripheral spectrum of hyperbolic maps \(T\).

  6. 6.

    This follows from the fact that expanding maps are topologically mixing.

  7. 7.

    See Appendix B. We use the expressions equilibrium state and equilibrium measure interchangeably.

  8. 8.

    \(\Pi _{j}\) is just the spectral projector \((2\pi \mathrm{i})^{-1}\int_{|z-\gamma_{j}|=\epsilon_{j}} (z-\mathcal{L}_{g})^{-1} \, \mathrm{d}z\) for the isolated eigenvalue \(\gamma_{j}\).

  9. 9.

    Spaces of bounded variation or generalised bounded variation can also be used, but this approach is not simpler to carry out.

  10. 10.

    See e.g. [165, §I.6, Chap. XI], where the notation \(\mathcal{L}^{t}_{p}\) is used.

  11. 11.

    Since \(\Omega\) is finite, the norms defined by taking the sum or the maximum over \(\omega\) are equivalent. In order to get a Hilbert norm when \(p=2\), one should consider the sum.

  12. 12.

    See also [40].

  13. 13.

    See the discussion before Theorem 2.31 below and Appendix D.1 for the general notion of an operator \(a^{Op}\) associated with a symbol \(a\).

  14. 14.

    The limit (2.27) exists and coincides with the infimum by submultiplicativity.

  15. 15.

    Note that the last claim of [11, Lemma 16 (3)] is incorrect in general, the number \(\theta\) there must be replaced by the maximal contraction.

  16. 16.

    The extendability condition (2.29) holds e.g. if \(U\) is a small ball and \(F\) is close enough to its derivative on \(U\). Condition (2.29) is not needed in Section 2.3.2. It will be used to control the term \(\mathcal{M}_{c}\) in the decomposition (2.95) in Section 2.4.2.

  17. 17.

    The indicator function of a set \(X\) satisfies \(\mathbf{1}_{X}^{p/(p-1)}=\mathbf{1}_{X}\) for all \(1< p<\infty\).

  18. 18.

    A topological space in which distinct points have disjoint neighbourhoods.

  19. 19.

    This can be done by using a cover of \(M\) by \(d\)-dimensional balls of radius equal to the Lebesgue number of \(\mathcal{V}_{m}\) and with centers on an appropriate lattice; see e.g. [179] for a more general result, and the references therein. It is possible to take \(\nu_{d}=d+1\), see [176, Thm 4.5.8, Thm 4.5.13].

  20. 20.

    Together with Remark 2.22, up to replacing \(\tilde{g}\) by \(\tilde{g}+\epsilon\) for arbitrarily small \(\epsilon\) if \(t'\) is very small

  21. 21.

    A smooth expanding map has no complexity at the beginning, in contrast to the piecewise smooth systems in [167] or [47].

  22. 22.

    In particular, \(\psi_{n}\) is a symbol of order 0 (see Appendix D.1).

  23. 23.

    See the discussion before Theorem 2.31 below and Appendix D.1 for the general notion of an operator \(a^{Op}\) associated with a symbol \(a\).

  24. 24.

    This is basically a generalisation of Pythagoras’ theorem.

  25. 25.

    An analogous decomposition will be essential in Chapter 3 and in the hyperbolic setting of Part II.

  26. 26.

    In the hyperbolic setting of Part II, the analogue of Lemma 2.34 is (4.57).

  27. 27.

    The finite set depends on the dimension \(d\).

  28. 28.

    The argument above also shows that there exists a constant \(C>0\) such that \(b_{n} * b_{m}(x)\le C \cdot b_{\min\{n,m\}}(x)\) for any \(x\in \mathbb{R}^{d}\) and any \(n,m\ge0\), as noted in [31, (4.21)]. The proof can be organised differently, stating this fact as a separate lemma, see [31, App C].

  29. 29.

    If \(r\) is large enough and \(T_{\epsilon}\in C^{N}([-1,1],C^{r}(M,M))\) for \(N\ge3\), it is possible to write down explicit formulas for derivatives of higher order.

  30. 30.

    The invariant density has singularities of the type \(\sqrt{x-c_{k}}^{-1}\), and belongs to \(H^{t}_{p}\) for \(t<1/2\) and \(p>1\) close enough to 1.

  31. 31.

    By (2.25) in Lemma 2.16, the upper bound \(R_{*}^{t,p}(g)\) for \(p\ne\infty\) improves the bound in [11]. See also footnote 15.

  32. 32.

    There, a dynamical proof is given, bypassing Theorem C.1.

  33. 33.

    See also [84, Thm 3.3] for a slight generalisation.

References

  1. Adam, A.: Generic non-trivial resonances for Anosov diffeomorphisms. Nonlinearity 30, 1146–1164 (2017)

    Article  MathSciNet  Google Scholar 

  2. Adams, R.A., Fournier, J.J.F.: Sobolev spaces. Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdamn (2003)

    MATH  Google Scholar 

  3. Baillif, M., Baladi, V.: Kneading determinants and spectra of transfer operators in higher dimensions: the isotropic case. Ergodic Theory Dynam. Systems 25, 1437–1470 (2005)

    Article  MathSciNet  Google Scholar 

  4. Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing, River Edge, NJ (2000)

    MATH  Google Scholar 

  5. Baladi, V.: Linear response, or else. ICM Seoul Proceedings Vol. III, 525–545 (2014). http://www.icm2014.org/en/vod/proceedings.html

    Google Scholar 

  6. Baladi, V., Demers, M., Liverani, C.: Exponential decay of correlations for finite horizon Sinai billiard flows. Invent. Math. 211, 39–177 (2018)

    Article  MathSciNet  Google Scholar 

  7. Baladi, V., Gouëzel, S.: Good Banach spaces for piecewise hyperbolic maps via interpolation. Annales de l’Institut Henri Poincaré/Analyse non linéaire 26, 1453–1481 (2009)

    Article  MathSciNet  Google Scholar 

  8. Baladi, V., Gouëzel, S.: Banach spaces for piecewise cone hyperbolic maps. J. Modern Dynam. 4, 91–135 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Baladi, V., Kitaev, A., Ruelle, D., Semmes, S.: Sharp determinants and kneading operators for holomorphic maps. Tr. Mat. Inst. Steklova 216, Din. Sist. i Smezhnye Vopr., 193–235 (1997); translation in Proc. Steklov Inst. Math. 216, 186–228 (1997)

    Google Scholar 

  10. Baladi, V., Liverani, C.: Exponential decay of correlations for piecewise contact hyperbolic flows. Comm. Math. Phys. 314, 689–773 (2012)

    Article  MathSciNet  Google Scholar 

  11. Baladi, V., Ruelle, D., Sharp determinants. Invent. Math. 123, 553–574 (1996)

    Article  MathSciNet  Google Scholar 

  12. Baladi, V., Tsujii, M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier 57, 127–154 (2007)

    Article  MathSciNet  Google Scholar 

  13. Baladi, V., Tsujii, M.: Spectra of differentiable hyperbolic maps. In: Albeverio, S., Marcolli, M., Paycha, S., Plazas, J. (eds.) Traces in number theory, geometry and quantum fields, pp. 1–21, Aspects Math., E38, Friedr. Vieweg, Wiesbaden (2008)

    Google Scholar 

  14. Baladi, V., Tsujii, M.: Dynamical determinants and spectrum for hyperbolic diffeomorphisms. In: Burns, K., Dolgopyat, D., Pesin, Ya. (eds.) Probabilistic and Geometric Structures in Dynamics, pp. 29–68, Contemp. Math., 469, Amer. Math. Soc., Providence, RI (2008)

    Chapter  Google Scholar 

  15. Baladi, V., Young, L.-S.: On the spectra of randomly perturbed expanding maps. Comm. Math. Phys 156, 355–385 (1993). Erratum. Comm. Math. Phys 166, 219–220 (1994)

    Article  MathSciNet  Google Scholar 

  16. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin-New York (1976)

    Book  Google Scholar 

  17. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  18. Brin, M., Stuck, G.: Introduction to dynamical systems. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  19. Buzzi, J.: No or infinitely many a.c.i.p. for piecewise expanding \(C^{r}\) maps in higher dimensions. Comm. Math. Phys. 222, 495–501 (2001)

    Article  MathSciNet  Google Scholar 

  20. Buzzi, J., Maume-Deschamps, V.: Decay of correlations for piecewise invertible maps in higher dimensions. Israel J. Math. 131, 203–220 (2002)

    Article  MathSciNet  Google Scholar 

  21. Collet, P., Eckmann, J.-P.: Liapunov multipliers and decay of correlations in dynamical systems. J. Statist. Phys. 115, 217–254 (2004)

    Article  MathSciNet  Google Scholar 

  22. Collet, P., Isola, S.: On the essential spectrum of the transfer operator for expanding Markov maps. Comm. Math. Phys. 139, 551–557 (1991)

    Article  MathSciNet  Google Scholar 

  23. Demers, M.F., Zhang, H.-K.: Spectral analysis for the transfer operator for the Lorentz gas. J. Modern Dynamics 5, 665–709 (2011)

    Article  MathSciNet  Google Scholar 

  24. Faure, F., Roy, N., Sjöstrand, J.: Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances. Open Math. J. 1, 35–81 (2008)

    Article  MathSciNet  Google Scholar 

  25. Fried, D.: The zeta functions of Ruelle and Selberg I. Ann. Sci. École Norm. Sup. (4) 19, 491–517 (1986)

    Article  MathSciNet  Google Scholar 

  26. Fried, D.: Meromorphic zeta functions for analytic flows. Comm. Math. Phys. 174, 161–190 (1995)

    Article  MathSciNet  Google Scholar 

  27. Fried, D.: The flat-trace asymptotics of a uniform system of contractions. Ergodic Theory Dynam. Systems 15, 1061–1073 (1995)

    Article  MathSciNet  Google Scholar 

  28. Gouëzel, S.: Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps. Israel J. Math. 180, 1–41 (2010)

    Article  MathSciNet  Google Scholar 

  29. Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dynam. Systems 26, 189–217 (2006)

    Article  MathSciNet  Google Scholar 

  30. Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981)

    Article  MathSciNet  Google Scholar 

  31. Gundlach, V. M., Latushkin, Y.: A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces. Ergodic Theory Dynam. Systems 23, 175–191 (2003)

    Article  MathSciNet  Google Scholar 

  32. Hörmander, L.: The analysis of linear partial differential operators. III. Pseudo-differential operators. Grundlehren der Mathematischen Wissenschaften 274, Springer-Verlag, Berlin (Corrected reprint of the 1985 original, 1994)

    MATH  Google Scholar 

  33. Jézéquel, M.: Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. arXiv:1708.01055

  34. Karlin, S.: Positive operators. J. Math. Mech. 8, 907–937 (1959)

    MathSciNet  MATH  Google Scholar 

  35. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  36. Keller, G.: On the rate of convergence to equilibrium in one-dimensional systems. Comm. Math. Phys. 96, 181–193 (1984)

    Article  MathSciNet  Google Scholar 

  37. Keller, G., Liverani, C.: Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 141–152 (1999)

    MathSciNet  MATH  Google Scholar 

  38. Keller, G., Rugh, H.H.: Eigenfunctions for smooth expanding circle maps. Nonlinearity 17, 1723–1730 (2004)

    Article  MathSciNet  Google Scholar 

  39. Krzyżewski, K., Szlenk, W.: On invariant measures for expanding differentiable mappings. Studia Math. 33, 83–92 (1969)

    Article  MathSciNet  Google Scholar 

  40. Liverani, C.: Rigorous numerical investigation of the statistical properties of piecewise expanding maps – A feasibility study, Nonlinearity 14, 463–490 (2001)

    Article  MathSciNet  Google Scholar 

  41. Liverani, C.: Invariant measures and their properties. A functional analytic point of view. In: Dynamical systems. Part II: Topological Geometrical and Ergodic Properties of Dynamics, pp. 185–237, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa (2003)

    Google Scholar 

  42. Mañé, R.: Ergodic Theory and Differentiable Dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete, 8. Springer-Verlag, Berlin (1987).

    Book  Google Scholar 

  43. Nakano, Y., Sakamoto, Sh.: Spectra of expanding maps on Besov spaces. arXiv:1710.09673

  44. Nonnenmacher, S., Zworski, M.: Decay of correlations for normally hyperbolic trapping. Invent. Math. 200, 345–438 (2015)

    Article  MathSciNet  Google Scholar 

  45. Paley, J., Littlewood, R.: Theorems on Fourier series and power series. Proc. London Math. Soc. 42, 52–89 (1937)

    MathSciNet  MATH  Google Scholar 

  46. Pinkus, A.: \(n\)-Widths in Approximation Theory. Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete (1985)

    Book  Google Scholar 

  47. Pollicott, M., Vytnova, P.: Linear response and periodic points. Nonlinearity 29, 3047–3066 (2016)

    Article  MathSciNet  Google Scholar 

  48. Ruelle, D.: Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34, 231–242 (1976)

    Article  MathSciNet  Google Scholar 

  49. Ruelle, D.: Resonances of chaotic dynamical systems. Phys. Rev. Lett. 56, 405–407 (1986)

    Article  MathSciNet  Google Scholar 

  50. Ruelle, D.: The thermodynamic formalism for expanding maps. Comm. Math. Phys. 125, 239–262 (1989)

    Article  MathSciNet  Google Scholar 

  51. Ruelle, D.: An extension of the theory of Fredholm determinants. Inst. Hautes Études Sci. Publ. Math. 72, 175–193 (1990)

    Article  MathSciNet  Google Scholar 

  52. Ruelle, D.: Thermodynamic formalism of maps satisfying positive expansiveness and specification. Nonlinearity 5, 1223–1236 (1992)

    Article  MathSciNet  Google Scholar 

  53. Ruelle, D.: Differentiation of SRB states. Comm. Math. Phys. 187, 227–241 (1997)

    Article  MathSciNet  Google Scholar 

  54. Ruelle, D.: A review of linear response theory for general differentiable dynamical systems. Nonlinearity 22, 855–870 (2009)

    Article  MathSciNet  Google Scholar 

  55. Rugh, H.H.: The correlation spectrum for hyperbolic analytic maps. Nonlinearity 5, 1237–1263 (1992)

    Article  MathSciNet  Google Scholar 

  56. Rugh, H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. Ergodic Theory Dynam. Systems 16, 805–819 (1996)

    Article  MathSciNet  Google Scholar 

  57. Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. Walter de Gruyter & Co., Berlin (1996)

    Book  Google Scholar 

  58. Shub, M.: Endomorphisms of compact differentiable manifolds. Amer. J. Math. 91, 175–199 (1969)

    Article  MathSciNet  Google Scholar 

  59. Shubin, M.A.: Pseudodifferential operators and spectral theory. Second edition. Springer-Verlag, Berlin (2001)

    Book  Google Scholar 

  60. Slipantschuk, J., Bandtlow, O.F., Just, W.: Analytic expanding circle maps with explicit spectra. Nonlinearity 26, 3231–3245 (2013)

    Article  MathSciNet  Google Scholar 

  61. Slipantschuk, J., Bandtlow, O.F., Just, W.: Complete spectral data for analytic Anosov maps of the torus. Nonlinearity 30, 2667–2686 (2017)

    Article  MathSciNet  Google Scholar 

  62. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  63. Taylor, M.E.: Pseudo differential operators. Princeton University Press, Princeton (1981)

    Google Scholar 

  64. Taylor, M.E.: Pseudodifferential operators and nonlinear PDE. Progress in Math. 100, Birkhäuser Boston, Inc., Boston, MA (1991)

    Book  Google Scholar 

  65. Thomine, D.: A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems (A) 30, 917–944 (2011)

    Article  MathSciNet  Google Scholar 

  66. Triebel, H.: General function spaces III (spaces \(B^{g(x)}_{p,q}\) and \(F^{g(x)}_{p,q}\), \(1< p < \infty\): basic properties). Analysis Math. 3, 221–249 (1977)

    Article  MathSciNet  Google Scholar 

  67. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  68. Triebel, H.: Theory of function spaces II. Birkhäuser, Basel (1992)

    Book  Google Scholar 

  69. Tsujii, M.: Decay of correlations in suspension semi-flows of angle multiplying maps. Ergodic Theory Dynam. Systems. 28, 291–317 (2008)

    Article  MathSciNet  Google Scholar 

  70. Tsujii, M.: Quasi-compactness of transfer operators for contact Anosov flows. Nonlinearity 23, 1495–1545 (2010)

    Article  MathSciNet  Google Scholar 

  71. Tsujii, M.: The error term of the prime orbit theorem for expanding semiflows. Ergodic Theory and Dynamical Systems (2017) https://doi.org/10.1017/etds.2016.113

  72. van Mill, J.: Infinite-dimensional topology. Prerequisites and introduction. North-Holland Mathematical Library, 43, North-Holland Publishing Co., Amsterdam (1989)

    MATH  Google Scholar 

  73. Viana, M.: Lectures on Lyapunov exponents. Cambridge Studies in Advanced Mathematics, 145, Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  74. Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin (1982)

    MATH  Google Scholar 

  75. Weller, G.P.: The intersection multiplicity of compact \(n\)-dimensional metric spaces. Proc. Amer. Math. Soc. 36, 293–294 (1972)

    MathSciNet  MATH  Google Scholar 

  76. Yosida, K.: Functional analysis. Reprint of the sixth (1980) edition. Classics in Mathematics. Springer-Verlag, Berlin (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baladi, V. (2018). Smooth expanding maps: The spectrum of the transfer operator. In: Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-319-77661-3_2

Download citation

Publish with us

Policies and ethics