Skip to main content

Blackwell-Nash Equilibria in Zero-Sum Stochastic Differential Games

  • Conference paper
  • First Online:
XII Symposium of Probability and Stochastic Processes

Abstract

Advanced-type equilibria for a general class of zero-sum stochastic differential games have been studied in part by Escobedo-Trujillo et al. (J Optim Theory Appl 153:662–687, 2012), in which a comprehensive study of the so-named bias and overtaking equilibria was provided. On the other hand, a complete analysis of advanced optimality criteria in the context of optimal control theory such as bias, overtaking, sensitive discount, and Blackwell optimality was developed independently by Jasso-Fuentes and Hernández-Lerma (Appl Math Optim 57:349–369, 2008; J Appl Probab 46:372–391, 2009; Stoch Anal Appl 27:363–385, 2009). In this work we try to fill out the gap between the aforementioned references. Namely, the aim is to analyze Blackwell-Nash equilibria for a general class of zero-sum stochastic differential games. Our approach is based on the use of dynamic programming, the Laurent series and the study of sensitive discount optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Aliprantis, K. Border, Infinite Dimensional Analysis, 3rd edn. (Springer, Berlin, 2006)

    Google Scholar 

  2. A. Arapostathis, M. Ghosh, V. Borkar, Ergodic Control of Diffusion Processes, vol. 143. Encyclopedia of Mathematics and Its Applications (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  3. A. Arapostathis, V. Borkar, K. Suresh, Relative value iteration for stochastic differential games, in Advances in Dynamic Games: Theory, Applications, and Numerical Methods (Springer International Publishing, Cham, 2013), pp. 3–27

    Chapter  Google Scholar 

  4. J.B. Conway, A Course in Functional Analysis (Springer, New York, 1994)

    Google Scholar 

  5. B.A. Escobedo-Trujillo, J.D. López-Barrientos, O. Hernández-Lerma, Bias and overtaking equilibria for zero-sum stochastic differential games. J. Optim. Theory Appl. 153, 662–687 (2012)

    Article  MathSciNet  Google Scholar 

  6. M. Ghosh, A. Arapostathis, S. Marcus, Optimal control of switching diffusions with applications to flexible manufacturing systems. SIAM J. Control Optim. 30, 1–23 (1992)

    Google Scholar 

  7. H. Gimbert, W. Zielonka, Deterministic priority mean-payoff games as limits of discounted games, in Automata, Languages and Programming, Part II. Lecture Notes in Computer Science, vol. 4052 (Springer, Berlin, 2006), pp. 312–323

    Chapter  Google Scholar 

  8. H. Gimbert, W. Zielonka, Applying Blackwell optimality: priority mean-payoff games as limits of multi-discounted games, in Logic and Automata. Texts in Logic and Games, vol. 2 (Amsterdam University Press, Amsterdam, 2008), pp. 331–355

    Google Scholar 

  9. H. Gimbert, W. Zielonka, Blackwell optimal strategies in priority mean-payoff games. Int. J. Found. Comput. Sci. 23, 687–711 (2012)

    Article  MathSciNet  Google Scholar 

  10. H. Jasso-Fuentes, Noncooperative continuous-time Markov games. Morfismos 9, 39–54 (2005)

    Google Scholar 

  11. H. Jasso-Fuentes, O. Hernández-Lerma, Characterizations of overtaking optimality for controlled diffusion processes. Appl. Math. Optim. 57, 349–369 (2008)

    Article  MathSciNet  Google Scholar 

  12. H. Jasso-Fuentes, O. Hernández-Lerma, Blackwell optimality for controlled diffusion processes. J. Appl. Probab. 46, 372–391 (2009)

    Article  MathSciNet  Google Scholar 

  13. H. Jasso-Fuentes, O. Hernández-Lerma, Ergodic control, bias and sensitive discount optimality for Markov diffusion processes. Stoch. Anal. Appl. 27, 363–385 (2009)

    Article  MathSciNet  Google Scholar 

  14. H. Jasso-Fuentes, J.D. López-Barrientos, B.A. Escobedo-Trujilo, Infinite horizon nonzero-sum stochastic differential games with additive structure. IMA J. Math. Control Inform. 34, 283–309 (2017)

    Google Scholar 

  15. A. Leizarowitz, Controlled diffusion process on infinite horizon with the overtaking criterion. Appl. Math. Optim. 17, 61–78 (1988)

    Article  MathSciNet  Google Scholar 

  16. A. Leizarowitz, Optimal controls for diffusion in \(\mathbb {R}^d\)-min-max max-min formula for the minimal cost growth rate. J. Math. Anal. Appl. 149, 180–209 (1990)

    Google Scholar 

  17. J.D. López-Barrientos, Basic and advanced optimality criteria for zero-sum stochastic differential games. Ph.D. dissertation. Department of Mathematics, CINVESTAV-IPN, 2012. Available at http://www.math.cinvestav.mx/sites/default/files/tesis-daniel-2012.pdf

  18. S. Meyn, R. Tweedie, Stability of Markovian processes III. Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25, 518–548 (1993)

    MATH  Google Scholar 

  19. A.S. Nowak, Correlated relaxed equilibria in nonzero-sum linear differential games. J. Math. Anal. Appl. 163, 104–112 (1992)

    Article  MathSciNet  Google Scholar 

  20. T. Prieto-Rumeau, O. Hernández-Lerma, Bias and overtaking equilibria for zero-sum continuous- time Markov games. Math. Meth. Oper. Res. 61, 437–454 (2005)

    Article  MathSciNet  Google Scholar 

  21. T. Prieto-Rumeau, O. Hernández-Lerma, The Laurent series, sensitive discount and Blackwell optimality for continuous-time controlled Markov chains. Math. Meth. Oper. Res. 61, 123–145 (2005)

    Article  MathSciNet  Google Scholar 

  22. M.L. Puterman, Sensitive discount optimality in controlled one-dimensional diffusions. Ann. Probab. 2, 408–419 (1974)

    Article  MathSciNet  Google Scholar 

  23. M. Schäl, Conditions for optimality and for the limit of n-stage optimal policies to be optimal. Z. Wahrs. Verw. Gerb. 32, 179–196 (1975)

    Article  Google Scholar 

  24. J. Warga, Optimal Control of Differential and Functional Equations (Academic, New York, 1972)

    MATH  Google Scholar 

  25. P. Whittle, Risk-Sensitive Optimal Control. Wiley-Interscience Series in Systems and Optimization (Wiley, Chichester, 1990)

    Google Scholar 

  26. L.C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30, 212–234 (1937)

    MATH  Google Scholar 

Download references

Acknowledgement

This research was supported in part by CONACyT grant 238045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Jasso-Fuentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Escobedo-Trujillo, B.A., Jasso-Fuentes, H., López-Barrientos, J.D. (2018). Blackwell-Nash Equilibria in Zero-Sum Stochastic Differential Games. In: Hernández-Hernández, D., Pardo, J., Rivero, V. (eds) XII Symposium of Probability and Stochastic Processes. Progress in Probability, vol 73. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-77643-9_5

Download citation

Publish with us

Policies and ethics