Skip to main content

Hybrid Metaheuristics Applied to Image Reconstruction for an Electrical Impedance Tomography Prototype

  • Chapter
  • First Online:
Hybrid Metaheuristics for Image Analysis

Abstract

Evolutionary computation has much scope for solving several important practical applications. However, sometimes they return only marginal performance, related to inappropriate selection of various parameters (tuning), inadequate representation, the number of iterations and stop criteria, and so on. For these cases, hybridization could be a reasonable way to improve the performance of algorithms. Electrical impedance tomography (EIT) is a non-invasive imaging technique free of ionizing radiation. EIT image reconstruction is considered an ill-posed problem and, therefore, its results are dependent on dynamics and constraints of reconstruction algorithms. The use of evolutionary and bioinspired techniques to reconstruct EIT images has been taking place in the reconstruction algorithm area with promising qualitative results. In this chapter, we discuss the implementation of evolutionary and bioinspired algorithms and its hybridizations to EIT image reconstruction. Quantitative and qualitative analyses of the results demonstrate that hybrid algorithms, here considered, in general, obtain more coherent anatomical images than canonical and non-hybrid algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An isotropic material is a medium whose electrical characteristics do not depend on the considered direction.

  2. 2.

    Instead of isotropic materials, an anisotropic material has direction-dependent characteristics.

  3. 3.

    The gradient of \(F(x,y) = \nabla F(x,y) = i \frac {\partial F(x,y)}{\partial x} + j \frac {\partial F(x,y)}{\partial y} = \left (\frac {\partial F(x,y)}{\partial x}, \frac {\partial F(x,y)}{\partial y} \right )\).

  4. 4.

    The divergent of \(F(F_x, F_y) = \nabla \cdot F(F_x, F_y) = \frac {\partial F_x}{\partial x}+\frac {\partial F_y}{\partial y}\).

  5. 5.

    A versor is a vector of unitary module usually used to indicate the direction in a given operation.

References

  1. C. Grosan, A. Abraham, Hybrid evolutionary algorithms: methodologies, architectures, and reviews, in Hybrid Evolutionary Algorithms (Springer, Berlin, 2007), pp. 1–17

    Google Scholar 

  2. Y. Wang, Z. Cai, G. Guo, Y. Zhou, Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems. IEEE Trans. Syst. Man Cybern. B (Cybern.) 37(3), 560–575 (2007)

    Google Scholar 

  3. C. Liang, Y. Huang, Y. Yang, A quay crane dynamic scheduling problem by hybrid evolutionary algorithm for berth allocation planning. Comput. Ind. Eng. 56(3), 1021–1028 (2009)

    Google Scholar 

  4. F. Grimaccia, M. Mussetta, R.E. Zich, Genetical swarm optimization: self-adaptive hybrid evolutionary algorithm for electromagnetics. IEEE Trans. Antennas Propag. 55(3), 781–785 (2007)

    Google Scholar 

  5. J.M. Peña, V. Robles, P. Larranaga, V. Herves, F. Rosales, M.S. Pérez, Ga-eda: hybrid evolutionary algorithm using genetic and estimation of distribution algorithms, in International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (Springer, Berlin, 2004), pp. 361–371

    Google Scholar 

  6. D.H. Wolpert, W.G. Macready et al., No free lunch theorems for search. Technical Report SFI-TR-95-02-010, Santa Fe Institute (1995)

    Google Scholar 

  7. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Google Scholar 

  8. D.H. Wolpert, W.G. Macready, Coevolutionary free lunches. IEEE Trans. Evol. Comput. 9(6), 721–735 (2005)

    Google Scholar 

  9. T. Cheng, B. Peng, Z. Lü, A hybrid evolutionary algorithm to solve the job shop scheduling problem. Ann. Oper. Res. 242(2), 223–237 (2016)

    Google Scholar 

  10. P. Guo, W. Cheng, Y. Wang, Hybrid evolutionary algorithm with extreme machine learning fitness function evaluation for two-stage capacitated facility location problems. Expert Syst. Appl. 71, 57–68 (2017)

    Google Scholar 

  11. R.R. Ribeiro, A.R. Feitosa, R.E. de Souza, W.P. dos Santos, A modified differential evolution algorithm for the reconstruction of electrical impedance tomography images, in 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC) (IEEE, New York, 2014), pp. 1–6

    Google Scholar 

  12. R.R. Ribeiro, A.R. Feitosa, R.E. de Souza, W.P. dos Santos, Reconstruction of electrical impedance tomography images using chaotic self-adaptive ring-topology differential evolution and genetic algorithms, in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, New York, 2014), pp. 2605–2610

    Google Scholar 

  13. M.G. Rasteiro, R. Silva, F.A.P. Garcia, P. Faia, Electrical tomography: a review of configurations and applications to particulate processes. KONA Powder Part. J. 29, 67–80 (2011)

    Google Scholar 

  14. G.L.C. Carosio, V. Rolnik, P. Seleghim Jr., Improving efficiency in electrical impedance tomography problem by hybrid parallel genetic algorithm and a priori information, in Proceedings of the XXX Congresso Nacional de Matemática Aplicada e Computacional, Florianopolis (2007)

    Google Scholar 

  15. F.C. Peters, L.P.S. Barra, A.C.C. Lemonge, Application of a hybrid optimization method for identification of steel reinforcement in concrete by electrical impedance tomography, in 2nd International Conference on Engineering Optimization (2010)

    Google Scholar 

  16. V.P. Rolnik, P. Seleghim Jr., A specialized genetic algorithm for the electrical impedance tomography of two-phase flows. J. Braz. Soc. Mech. Sci. Eng. 28(4), 378–389 (2006)

    Google Scholar 

  17. T.K. Bera, S.K. Biswas, K. Rajan, J. Nagaraju, Improving image quality in electrical impedance tomography (EIT) using projection error propagation-based regularization (PEPR) technique: a simulation study. J. Electr. Bioimpedance 2(1), 2–12 (2011)

    Google Scholar 

  18. W.P. dos Santos, F.M. de Assis, Algoritmos dialéticos para inteligência computacional. Editora Universitária UFPE (2013)

    Google Scholar 

  19. A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, vol. 2 (Springer, Berlin, 2015)

    Google Scholar 

  20. A.E. Eiben, M. Schoenauer, Evolutionary computing. Inf. Process. Lett. 82(1), 1–6 (2002)

    Google Scholar 

  21. J. Kennedy, E. Russell, Particle swarm optimization, in Proceedings of 1995 IEEE International Conference on Neural Networks (1995), pp. 1942–1948

    Google Scholar 

  22. K.-L. Du, M.N.S. Swamy, Bacterial Foraging Algorithm (Springer International Publishing, Cham, 2016), pp. 217–225

    Google Scholar 

  23. C.J. Bastos Filho, F.B. de Lima Neto, A.J. Lins, A.I. Nascimento, M.P. Lima, A novel search algorithm based on fish school behavior, in IEEE International Conference on Systems, Man and Cybernetics, SMC 2008 (IEEE, New York, 2008), pp. 2646–2651

    Google Scholar 

  24. S.S. Madeiro, F.B. de Lima-Neto, C.J.A. Bastos-Filho, E.M. do Nascimento Figueiredo, Density as the segregation mechanism in fish school search for multimodal optimization problems, in Advances in Swarm Intelligence (Springer, Berlin, 2011), pp. 563–572

    Google Scholar 

  25. A. Chikhalikar, A. Darade, Swarm intelligence techniques: comparative study of ACO and BCO. Self 4, 5 (1995)

    Google Scholar 

  26. D. Karaboga, An idea based on honey bee swarm for numerical optimization. Technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  27. S.-M. Chen, A. Sarosh, Y.-F. Dong, Simulated annealing based artificial bee colony algorithm for global numerical optimization. Appl. Math. Comput. 219(8), 3575–3589 (2012)

    Google Scholar 

  28. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi et al., Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Google Scholar 

  29. T. de Castro Martins, M.d.S.G. Tsuzuki, Electrical impedance tomography reconstruction through simulated annealing with total least square error as objective function, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, New York, 2012), pp. 1518–1521

    Google Scholar 

  30. J. G. Sauer, Abordagem de Evolução diferencial híbrida com busca local aplicada ao problema do caixeiro viajante. PhD thesis, Pontifícia Universidade Católica do Paraná, 2007

    Google Scholar 

  31. R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Google Scholar 

  32. G.T.d.S. Oliveira et al., Estudo e aplicações da evolução diferencial (2006)

    Google Scholar 

  33. S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Google Scholar 

  34. S. Das, A. Konar, Automatic image pixel clustering with an improved differential evolution. Appl. Soft Comput. 9(1), 226–236 (2009)

    Google Scholar 

  35. C.J. Ter Braak, A Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy bayesian computing for real parameter spaces. Stat. Comput. 16(3), 239–249 (2006)

    Google Scholar 

  36. W.P. dos Santos, F.M. de Assis, Optimization based on dialectics, in International Joint Conference on Neural Networks, IJCNN 2009 (IEEE, New York, 2009), pp. 2804–2811

    Google Scholar 

  37. K. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization (Springer Science & Business Media, New York, 2006)

    Google Scholar 

  38. M.G.P. de Lacerda, F.B. de Lima Neto, A new heuristic of fish school segregation for multi-solution optimization of multimodal problems, in Second International Conference on Intelligent Systems and Applications (INTELLI 2013) (2013), pp. 115–121

    Google Scholar 

  39. A. Lins, C.J. Bastos-Filho, D.N. Nascimento, M.A.O. Junior, F.B. de Lima-Neto, Analysis of the performance of the fish school search algorithm running in graphic processing units, in Theory and New Applications of Swarm Intelligence (2012), pp. 17–32

    Google Scholar 

  40. A. Adler, T. Dai, W.R.B. Lionheart, Temporal image reconstruction in electrical impedance tomography. Physiol. Meas. 28(7), S1 (2007)

    Google Scholar 

  41. A.R.S. Feitosa, Reconstrução de imagens de tomografia por impedância elétrica utilizando o método dialético de otimização. Master’s thesis, Universidade Federal de Pernambuco (2015)

    Google Scholar 

  42. V.P. Rolnik, P. Seleghim Jr., A specialized genetic algorithm for the electrical impedance tomography of two-phase flows. J. Braz. Soc. Mech. Sci. Eng. 28(4), 378–389 (2006)

    Google Scholar 

  43. M.G. Rasteiro, R.C.C. Silva, F.A.P. Garcia, P.M. Faia, Electrical tomography: a review of configurations and applications to particulate processes. KONA Powder Part. J. 29, 67–80 (2011)

    Google Scholar 

  44. M. Cheney, D. Isaacson, J.C. Newell, Electrical impedance tomography. SIAM Rev. 41(1), 85–101 (1999)

    Google Scholar 

  45. O.H. Menin, Método dos elementos de contorno para tomografia de impedância elétrica. Master’s thesis, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (2009)

    Google Scholar 

  46. J.N. Tehrani, C. Jin, A. McEwan, A. van Schaik, A comparison between compressed sensing algorithms in electrical impedance tomography, in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (IEEE, New York, 2010), pp. 3109–3112

    Google Scholar 

  47. S.P. Kumar, N. Sriraam, P. Benakop, B. Jinaga, Reconstruction of brain electrical impedance tomography images using particle swarm optimization, in 2010 5th International Conference on Industrial and Information Systems (IEEE, New York, 2010), pp. 339–342

    Google Scholar 

  48. T.J. Yorkey, J.G. Webster, W.J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans. Biomed. Eng. 34(11), 843–852 (1987)

    Google Scholar 

  49. R. Bayford, Bioimpedance tomography (electrical impedance tomography). Annu. Rev. Biomed. Eng. 8, 63–91 (2006)

    Google Scholar 

  50. H. Wang, G. Xu, S. Zhang, W. Yan, An implementation of generalized back projection algorithm for the 2-D anisotropic EIT problem. IEEE Trans. Magn. 51(3), 1–4 (2015)

    Google Scholar 

  51. C.N. Lara Herrera, Algoritmo de tomografia por impedância elétrica baseado em simulated annealing. Master’s thesis, Universidade de São Paulo (2007)

    Google Scholar 

  52. G.V. Momenté, B.H.L.N. Peixoto, M.S.G. Tsuzuki, T.D.C. Martins, New objective function for electrical image tomography reconstruction, in ABCM Symposium Series in Mechatronics (2013)

    Google Scholar 

  53. P. Hua, E.J. Woo, J.G. Webster, W.J. Tompkins, Finite element modeling of electrode-skin contact impedance in electrical impedance tomography. IEEE Trans. Biomed. Eng. 40, 335–343 (1993)

    Google Scholar 

  54. V.P. Rolnik, Contribuição ao desenvolvimento de uma nova técnica de reconstrução tomográfica para sondas de visualização direta. PhD thesis, Escola de Engenharia de São Carlos da Universidade de São Paulo (2003)

    Google Scholar 

  55. M. Tang, W. Wang, J. Wheeler, M. McCormick, X. Dong, The number of electrodes and basis functions in EIT image reconstruction. Physiol. Meas. 23(1), 129 (2002)

    Google Scholar 

  56. C.-N. Huang, F.-M. Yu, H.-Y. Chung, The scanning data collection strategy for enhancing the quality of electrical impedance tomography. IEEE Trans. Instrum. Meas. 57(6), 1193–1198 (2008)

    Google Scholar 

  57. V.A.F. Barbosa, R.R. Ribeiro, A.R.S. Feitosa, V.L.B.A. da Silva, A.D.D. Rocha, R.C. Freitas, R.E. de Souza, W.P. dos Santos, Reconstrução de imagens de tomografia por impedância elétrica usando cardume de peixes, busca não-cega e algoritmo genético, in Anais do 12 Congresso Brasileiro de Inteligência Computacional, ABRICOM, Curitiba, PR, ed. by C.J.A. Bastos Filho, A.R. Pozo, H.S. Lopes (2015), pp. 1–6

    Google Scholar 

  58. A. Adler, W.R. Lionheart, Uses and abuses of EIDORS: an extensible software base for EIT. Physiol. Meas. 27(5), S25 (2006)

    Google Scholar 

  59. Y. Liu, F. Sun, A fast differential evolution algorithm using k-nearest neighbour predictor. Expert Syst. Appl. 38(4), 4254–4258 (2011)

    Google Scholar 

  60. K. Liu, X. Du, L. Kang, Differential evolution algorithm based on simulated annealing, in Advances in Computation and Intelligence (2007), pp. 120–126

    Google Scholar 

  61. P. Wang, X. Qian, Y. Zhou, N. Li, A novel differential evolution algorithm based on simulated annealing, in 2010 Chinese Control and Decision Conference (CCDC) (IEEE, New York, 2010), pp. 7–10

    Google Scholar 

  62. M.F.M. Vallejo, C.N.L. Herrera, F.S. de Moura, J.C.C. Aya, R.G. Lima, The use of linear programming as search method of images in electrical impedance tomography, in Proceedings of the 19th International Congress of Mechanical Engineering (2007)

    Google Scholar 

  63. G. Singh, S. Anand, B. Lall, A. Srivastava, V. Singh, Development of a microcontroller based electrical impedance tomography system, in 2015 IEEE Long Island Systems, Applications and Technology Conference (LISAT) (IEEE, New York, 2015), pp. 1–4

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wellington Pinheiro dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

dos Santos, W.P. et al. (2018). Hybrid Metaheuristics Applied to Image Reconstruction for an Electrical Impedance Tomography Prototype. In: Bhattacharyya, S. (eds) Hybrid Metaheuristics for Image Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-77625-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77625-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77624-8

  • Online ISBN: 978-3-319-77625-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics